
Netmapper User Guide
Release 2.1.1722

Distributed Analytics and Security Institute (DASI)
Mississippi State University

Oct 02, 2017





CONTENTS

1 Executive Summary 1

2 Requirements 3
2.1 Host Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Remote Target Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Installation 7

4 Usage Overview 9
4.1 General Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Mapping Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Configuration Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Visualization Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Credentials Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Network Difference Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 View Devices Tab Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Custom XML Tagging 53

6 User Custom Query 55

7 Remote Login and Node Identification 57
7.1 Windows OS Default Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Windows OS Role Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3 Linux OS Default Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Linux OS Role Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.5 Hypervisor Role Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6 Cisco Network Appliance Data Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Adding new Query/Parse engines 63
8.1 Query/Parse Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Dynamic Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Query action (default query): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.4 Query action (role query): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Other Comments: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9 XML Output Schema 65
9.1 rloginDataObjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10 Automated Regression Testing of VMware Virtual Networks 69
10.1 Regression Test Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

i



10.2 Running a Regression Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3 Encrypted Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11 Appendix 77
11.1 Initialization File Key Words and File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11.2 Detailed XML Output Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
11.3 Python API Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12 Glossary 97

ii



CHAPTER

ONE

EXECUTIVE SUMMARY

The Netmapper tool from the Distributed Analytics and Security Institute (DASI) at Mississippi State University is a
network mapping tool with the following features:

• Host discovery using the Nmap program and SNMP (v1/v2c/v3 support, SNMP functions are within Netmapper,
not Nmap).

• Layer 3 topology discovery using SNMP and data retrieved via remote login.

• Layer 2 topology discovery using SNMP.

• Host role inference (such as Domain Controller, DNS, DHCP, WSUS, Yum server, etc.) for both Windows
and Linux nodes from data retrieved via remote login. Supported OSes for remote login are Windows Server
2008/2012, Windows 7 and above, CentOS 6/7, and Ubuntu 12/14.

• Remote CLI login query for Cisco devices. Supported OSes are IOS, NX-OS, IOS-XR, IOS-XE, and ASA.

• Network Difference tool for comparing networks produced from different scans.

• Network Merge tool for merging networks from different scans to produce a larger network view.

• Encrypted credential storage.

• XML output format.

• Dynamic visualization (zoom/pan) of the network.

• Static visualization using PDF or Visio as the output file format, different options for controlling graph output.

• Graphical difference between a reference Visio file of the network and a scanned network.

• Command-line capability that supports automated regression testing of VMware Vapps.

The Netmapper tool runs under Windows 7, 64-bit. Refer to the Language/Platform section for other requirements.

1



Netmapper User Guide, Release 2.1.1722

2 Chapter 1. Executive Summary



CHAPTER

TWO

REQUIREMENTS

This section documents the computer requirements for the local host running Netmapper and for remote machines and
devices that are to be queried by Netmapper for information extraction.

2.1 Host Requirements

Netmapper has been tested under Windows 7, 64-bit, SP1. While it is conceivable that it would run under other
Windows OS versions without any problems, no other Windows OS versions have been tested.

Netmapper must be installed in a directory path that has no spaces. The default installation directory is
C:\DasiNetmapper.

Netmapper uses Nmap to discover targets for query. Netmapper should be run with admin privilege so that Nmap
discovery will be able to all of its available discovery mechanisms for best operation.

There are some special requirements for both the local host and for remote hosts in order for data retrieval via remote
login to be successful.

2.1.1 Netmapper host requirements for Windows target query

Netmapper uses a combination of methods to query remote Windows hosts for information. Remote data retrieval
from Windows hosts is performed by PowerShell scripts located in the Netmapper installation directory. The primary
methods used are WMI, ADSI retrieval via LDAP queries, and Remote PowerShell Execution (only used for some
role data retrieval). For this to succeed, the follow are requirements for the Netmapper host machine:

• PowerShell 4.0 or higher installed.

• The login credentials for the remote machine must belong to the administrator group or some queries for remote
data will fail.

• Netmapper uses WMI and remote registry query to retrieve most information from Windows targets. How-
ever, Netmapper also uses powershell remote execution to retrieve some role configuration information from
Windows targets when there is no WMI alternative. If the Netmapper host is in a different domain from the
windows target, then powershell execution will fail unless the target is in the trusted hosts of the Netmapper
host. Two convenience scripts are in the Netmapper installation directory: get_trusted_hosts.ps1 and
set_trusted_hosts.ps1. The first script displays information that lists the trusted hosts (look for the
TrustedHosts key, will typically be empty). The second script will set the trusted hosts from a file that has one
host per line. To display or modify the trusted hosts, the Windows Remote Management (WinRM) service must
be started on the Netmapper host. The service start mode should be set to automatic (configuring/starting the
winrm service is a Netmapper installation option). To set mode to automatic, execute the following command
as an administrator from a command prompt:

3



Netmapper User Guide, Release 2.1.1722

sc config winrm start= auto

To start the service, execute the following command as an administrator from a command prompt:

net start winrm

• For retrieval of WSUS server role configuration information, the Netmapper machine must have the WSUS
console and the Microsoft Report Viewer 2008 Redistributable installed. Installation of the Microsoft Report
Viewer 2008 Redistributable is a Netmapper installation option.

2.1.2 Netmapper host requirements for Linux target query

There are no special requirements on the Netmapper host for querying Linux hosts.

2.1.3 Netmapper host requirements for Cisco target query

There are no special requirements on the Netmapper host for querying Cisco devices.

2.2 Remote Target Requirements

2.2.1 Windows remote hosts

This section lists the requirements for remote Windows hosts to be successfully queried by Netmapper.

• Remote hosts must allow WMI and remote registry queries at a minimum for all default information to be
retrieved. In general, servers like Windows 2008 and above already have this enabled, while workstations
do not. Please refer to online references for enabling this capability as it varies by OS type. In general, the
command:

winrm quickconfig

can be used on a machine to enable WMI queries to it.

• The network on the remote host for incoming WMI queries must be classified as a ‘work’ or ‘home’ network,
not a ‘public’ network. This classification can be viewed in the Network and Sharing Center accessible from
the Control Panel.

To test if the remote machine allows WMI connections, open a PowerShell window on the local machine and execute
the command:

Test-WSman hostname

where hostname is the name of the remote machine. If successful, key/values pairs are returned for keys of skid,
ProtocolVersion, ProductVendor, and ProductVersion.

• Some role data from servers is retrieved by remote PowerShell execution. On Windows Server 2012, this is
already enabled. On Windows Server 2008, it is not enabled. To enable remote PowerShell execution, open a
PowerShell window as an administrator and execute:

Enable-PsRemoting -Force

If Test-WSman hostname succeeds, but Netmapper login fails, then it may be necessary to modify the firewall rules on
the remote target machine by executing the following on the remote target machine:

4 Chapter 2. Requirements

http://www.microsoft.com/en-us/download/details.aspx?id=5216
http://www.microsoft.com/en-us/download/details.aspx?id=5216
http://www.microsoft.com/en-us/download/details.aspx?id=577


Netmapper User Guide, Release 2.1.1722

netsh advfirewall firewall set rule group="Windows Management Instrumentation (WMI)"
→˓new enable=yes

If you are querying Windows machines that are part of a domain, then Windows credentials should have the domain
name included in the user name (i.e. domain\user).

If querying Windows machines that are part of a domain, and the Netmapper machine is not part of the domain, then
retrieval of role configuration information for some roles will fail (domain controller configuration, Exchange server
configuration).

2.2.2 Linux remote hosts

The remote machine must allow SSH login via user/password authentication (Ubuntu and Kali nodes seem to have
this disabled by default).

The login credentials for the remote machine must have admin read privilege or some queries for remote data will fail.

2.2.3 Cisco devices

The device must allow SSH login via user/password authentication.

The login credential privilege level will determine the amount of information returned. The output of various show
commands are parsed for interface and routing configuration information. the show running-config command is also
executed and its output is saved in an archinve object within the XML. The output of the show running-config command
is not parsed as this requires the highest privilege level in order to successfully execute, so the information returned in
the non-archive XML structures does not depend on this command’s successful execution.

2.2. Remote Target Requirements 5



Netmapper User Guide, Release 2.1.1722

6 Chapter 2. Requirements



CHAPTER

THREE

INSTALLATION

The Netmapper self-installer allows the user to choose an installation directory. Netmapper must be installed in a
directory path that has no spaces in its path. The default installation directory is C:\DasiNetmapper.

During installation, Netmapper installs Microsoft Visual C++ 2008 and 2010 redistributables.

In addition to its own binary, Netmapper installs the Nmap tool under its own installation directory and uses this
Nmap version for host discovery and port scanning. Netmapper also installs the Graphviz tools under its installation
directory; this is needed for the network visualization options in Netmapper.

Other installation choices are:

• Nmap performance enhancements - these are registry modifications to improve Nmap performance. This is an
optional installation choice.

• Nmap Winpcap - a version of Winpcap for Nmap - this will not be installed if a later version of Winpcap is
already installed. This is an optional installation choice, but Nmap will fail if Winpcap is not already installed
on the system.

• Add Graphviz binaries to path - this will ad the Graphviz binaries under the Nmap installation directory to the
system search path. This is an optional installation choice, but Netmapper visualization will fail if the Graphviz
binaries are not on the system search path.

• WinRm service started and configured as auto - this is if you wish to modify the trusted hosts list (needed for
remote powershell execution to Windows hosts not in the same domain as the Netmapper host)

• Win2008 Report Viewer redistributable installation - this is needed for retrieval of WSUS configuration infor-
mation to succeed.

• Start Menu shortcuts - these can be optionally installed; a folder named DasiNetmapper is created in the start
menu. The Netmapper executable is available from the DasiNetmapper choice within this folder.

7



Netmapper User Guide, Release 2.1.1722

8 Chapter 3. Installation



CHAPTER

FOUR

USAGE OVERVIEW

The figure below shows the Netmapper main screen. The Mapping tab is the primary tab for starting Netmapper
actions. The Discover/Gather button is a do-all button that kicks off the following sequence when pressed:

• Discovery/TCP port scan - The target IPs/networks/hostnames specified on the first type-in line (‘Enter
target IPs. . . ’) are passed to Nmap which begins a discovery and TCP port scanning for these target
IPs/networks/hostnames.

• UDP port scan - Any devices discovered by Nmap in step one are then port scanned for UDP port status by a
second Nmap invocation.

• SNMP data retrieval - All discovered devices are then queried by SNMP for its system description to determine
if a device responds to an SNMP query. Any devices that respond to the SNMP system description are then
further SNMP queried for network information such as interfaces, routing tables, bridge tables, VLANs, etc.
During the SNMP information gathering phase, all devices are probed with an SNMP v1/v2c credential with
community string equal to public if no other SNMP credential is found for a node (this default query can be
disabled via a configuration option).

• Rlogin data retrieval - Any devices that match login credentials loaded from the Credentials tab are queried
by remote login. Remote login has two phases: a) Default data retrieval and b) role data retrieval. Default
data retrieval is performed first, and returns data that is common to all hosts such as running services, disk
configuration, firewall status/rules, etc. The default data is examined, and roles are assigned to a host such as
DNS server, DHCP server, Domain Controller etc. Based on the role determination, a second query may made
to a host to retrieve role-specific configuration data. Devices that match login credentials are also queried to
determine if they respond to a HyperVisor API call (vSphere API currently supported). If a device responds,
then role-specific data is retrieved from that node (the HyperVisor API call can be disabled by via configuration
option).

• Topology extraction - based on data gathered by SNMP and Remote Login, L2 (layer 2) and L3 (layer 3)
topology links are created for nodes.

• Custom tag - this allows user-written Python code to be dynamically imported and executed after the Topology
Extraction step. The intended use for this is to allow custom XML attributes to be added to an object.

9



Netmapper User Guide, Release 2.1.1722

Fig. 4.1: DASI Netmapper main screen.

Once the Discovery/Information Gathering/Topology extraction is complete, the data can be stored to an external file
in XML format using the File|Save Network menu choice.

4.1 General Usage

4.1.1 Startup actions (Initialization/Log files)

On startup, Netmapper loads an initialization file named config.txt from the .netmapper directory in the user’s home
directory (the –homedir <path> command line option can be used to change the directory for the location of the
.netmapper folder). Both the .netmapper directory and config.txt file are created if they do not exist. The configuration
file stores both dynamic and static configuration options. Static configuration options are editable by the user and
appear in the file before the dynamic options. The dynamic options are updated each time Netmapper is closed and
contain the current state of GUI options so that the same GUI options appear when Netmapper is reopened.

A log file is created in the users home appdata\local\temp directory. If you cannot see this directory then, from an
Explorer folder window, click on the Organize menu choice, then select Folder and search options. On the Folder
Options window, click on the View tab, and ensure that Show hidden files, folders, and drives is enabled (see the
figures below).

Fig. 4.2: Right-click folder options menu.

10 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.3: Enabling the Show hidden files, folders, and drives option.

All log messages are marked with one of three levels: INFO, WARNING, and ERROR.

4.1.2 Controlling verbosity

The verbosity control is used for limiting the number of log messages that appear in the Mapping tab output window
(all log messages always appear in the log file regardless of the verbosity setting).

Fig. 4.4: Screenshot of the verbosity selection box.

The verbosity control has three levels:

• 0 – only messages for gross actions are reported (Discovery, SNMP, Rlogin, etc.).

• 1 – messages for steps within a phase such as SNMP are printed, but not for each host/device.

• 2 – all log messages are echoed to the Mapping tab output window.

It is recommended that new users set verbosity to the maximum level so that there is ample feedback on Netmapper
actions.

4.1.3 File menu choices

The File Menu along the top ribbon has the following choices:

4.1. General Usage 11



Netmapper User Guide, Release 2.1.1722

Fig. 4.5: Screenshot of File menu choices.

• Load Network – loads a previous saved XML network file into memory. Any network objects currently in
memory are lost.

• Merge Network – loads a previous saved XML network file into memory but merges the new network objects
with objects currently in memory. Duplicate nodes are merged. This allows scans of different networks to be
combined into one file.

• Save Network – saves the current network objects in memory to an XML file.

• Save Network (Visualization subset) - saves the current network objects listed in the Visualization tab to an XML
file. The Visualization tab allows an object subset to be selected based on configurable filters, such as device
type (router, switch, etc.), by network connection, etc.

• CSV Export - exports the current network objects in memory as a CSV file. Only a small subset of the node data
is exported due to the limits of the CSV format (this functions more as an executive summary of the node data).
The CSV export code is in INSTALLDIR/plugins/csvexport/implementation.py and can be modified by the user.

• CSV Export (Visualization subset) - exports the current network objects listed in the Visualization tab to a CSV
file.

• Expand Rlogin Data – Some retrieved data from remote login are stored as files in compressed ZIP archives
within the XML. This expands the compressed data for all nodes in memory onto disk in the same folder that
the file was loaded from, under a folder named RloginNodeConfigData. A sub-folder named by the archive
timestamp is created, and then all nodes that have compressed data that share the same timestamp are expanded
here. Each node is identified by its hostname plus a portion of its UUID, with sub-folders for each role. Each
role sub-folder has one or more files/directories containing configuration data for that role (see the figure below).

12 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.6: Rlogin data folder expanded.

4.2 Mapping Tab Details

The Mapping tab is the primary tab in Netmapper for starting network discovery/information gathering and display of
log messages.

4.2.1 File Browse button, Enter target text edit

The Enter target text edit is for entry of target hosts or networks for discovery and information gathering.

Fig. 4.7: Screenshot of the File Browse button and the Enter target text box.

Entries must be white-space delimited. Hosts can be specified either by name (either FQDN or simple hostname) or
as an IP address (IPv4 or IPv6). Networks are specified in CIDR format (i.e., 192.168.1.0/24). The File Browse button
is used to browse to a text file containing a list of targets, one per line, with the last line being blank.

• If IPv6 addresses are passed, then the -6 flag is passed automatically to Nmap (required by Nmap).

• If a mixture of IPv4, IPv6 addresses are passed, then the targets are parsed into two lists (IPv4 and IPv6), and
Nmap scans are called once for each list. Nmap allows ranges to be specified for IPv4 addresses, and interfaces
for link-local IPv6 addresses, and these are allowed.

• If hostnames are passed, these are resolved using system DNS before Nmap is called so that it can be determined
if they are IPv4 or IPv6 addresses. If a hostname resolves into both IPv4 and IPv6 addresses, then Nmap is called
for each address.

4.2. Mapping Tab Details 13



Netmapper User Guide, Release 2.1.1722

4.2.2 Action buttons

The action buttons initiate discovery/information/topology actions in Netmapper.

Fig. 4.8: Screenshot of the action buttons bar.

When an action button is used, the other buttons, except for the Abort button, are disabled until the current action
completes.

• The Discover/Gather button is the do-everything button that performs discovery/port scanning, information
gathering, and topology inference for the targets specified in the Enter target text edit. The internal list of
devices is cleared on Discover/Gather button activation.

• The Discover button only performs discovery/port scanning for the targets specified in the Enter target text edit.
The internal list of devices is cleared on Discover button activation.

• The Gather(all) button performs SNMP and Remote login information gathering for network objects currently
in memory (either from a previous Discover action or by loading an XML file that was previously generated by
Netmapper.

• The Gather(Snmp) button performs only SNMP information gathering for network objects currently in memory.

• The Gather(rlogin) button performs only Remote login information gathering for network objects currently in
memory.

• The Topology button regenerates L3/L2 topology links for network objects currently in memory.

• The Custom Tag button dynamically imports and executes user-written Python code. The intended use of this
functionality is for adding custom XML attributes to an object. This capability is disabled by default via a
configuration option.

• The Abort button will abort any current Netmapper actions. It may take some time for the abort to complete as
Netmapper waits for any currently executing threads or processes to complete before halting the specified action
on remaining network objects.

4.2.3 Controlling Nmap discovery/port scanning

By default, Nmap is run twice during the discovery/port scanning phase:

• Scan #1 performs device discovery on the targets specified in the Enter target text edit. Any devices discovered
are then scanned for their TCP port status.

• Scan #2 performs UDP port scanning on the devices discovered by Scan #1.

The number of ports scanned (TCP & UDP) is controlled by the second combo box in the Port Scan control.

Fig. 4.9: Screenshot of the port scan number combo box.

The first combo box in the Port Scan control is used to enable TCP & UDP port scanning, enable TCP port scan only,
or disable port scanning completely.

14 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.10: Screenshot of the port scan selection.

The Scan Speed combo box sets the speed at which port scans are generated, with Normal, Fast, Slow corresponding
to Nmap speed templates of -T3, -T4, and -T2.

Fig. 4.11: Screenshot of the scan speed selection.

The Name Servers typein field can be used to specify alternate name servers instead of the system name server (this
field is passed to Nmap via the --dns-servers command line option).

Fig. 4.12: Screenshot of the nameserver typein field.

The Disable Name Resolution checkbox disables Nmap name resolution (useful for reducing discovery time).

Fig. 4.13: Screenshot of the Disable Name Resolution checkbox.

The Ignore Nmap MACs checkbox disables use of MAC addresses returned by Nmap (useful when querying over a
VPN – in this case, the MACs returned by Nmap are incorrect).

The two text edit controls under the Port Scan control can be used to completely customize the Nmap actions for Scan
#1 and Scan #2. Do not specify any input or output options or the -d option (increases debug information including
more port information) as Netmapper automatically adds these options. These text edit control values are stored as
dynamic parameters in the config.txt file, so if a complex set of options is entered, these are recalled the next time that
the Netmapper GUI is started.

Fig. 4.14: Screenshot of the Nmap options text boxes.

4.2. Mapping Tab Details 15



Netmapper User Guide, Release 2.1.1722

The Disable Nmap Discovery checkbox disables the Nmap discovery phase via the -Pn option. This means that Nmap
assumes that all hosts are available, and procedes directly to the port scanning phase. If port scanning is disabled, then
no packets are sent to any hosts. Caution - use of this with a network specification means that all addresses in the
network are expanded out to objects in the XML.

Fig. 4.15: Screenshot of the Disable Nmap Discovery checkbox.

The Disable Nmap OS Scan checkbox disables the Nmap OS scan during the TCP port scan phase (the Nmap OS scan
populates the OSGuess field in the XML). By default, Netmapper includes the Nmap OS Scan option (-O) during the
TCP port scan phase. Disabling this slightly improves scan speed and reduces traffic.

Fig. 4.16: Screenshot of the Disable Nmap OS Scan checkbox.

4.3 Configuration Tab Details

The Configuration tab provides easy access to different configuration options.

4.3.1 Loading/Saving config files

Fig. 4.17: Screenshot of the Configuration tab.

Netmapper loads a configuration text file named config.txt from the .netmapper directory in the user’s home directory.
The Load button will load a configuration file from a user-specified location. This location is saved in a file named
lastconfig.txt in the .netmapper directory in the user’s home directory. This same configuration file will then be loaded
the next time that Netmapper is started; this allows the user to change what configuration file is loaded on startup.

The Save button saves all configuration information to the last opened configuration file. The Save As button saves
configuration information to a user-specified file.

4.3.2 Seed-based discovery

Under the Configuration tab is a group labeled Seed Based Discovery.

16 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.18: Screenshot of the Seed Based Discovery section.

This allows the user to specify a single router as the discovery starting point. Entries in the ARP table from this router
are then used as targets in the next discovery iteration. The discovery iteration loop stops whenever no new devices
are discovered or the maximum hops in the L3 graph becomes equal or greater to the Max Hops parameter.

After seeded discovery is finished, the Nmap Assistance checkbox allows an optional additional discovery round by
doing an Nmap scan of all networks discovered to this point. This is intended to find any devices are in these networks
but not in the ARP tables used during seeded discovery. If a network is larger than /24, then a peephole of /24 is
used around an existing discovered device within that network instead of scanning all of the larger network. This is
intended to limit Nmap execution time during this step.

The typein field next to the Browse button can be used to specify either a list of networks or a file name that contains
one network per line. These networks are used limit the devices kept during seeded discovery. If the pulldown menu
is set to include, then only devices in the specified networks are kept. If the pulldown menu is set to exclude, then
discovered devices in the specified networks are discarded.

4.3.3 Query options

The Query group has options that control Rlogin/SNMP data retrieval.

Fig. 4.19: Screenshot of the Query group options.

These options are:

• Disable SNMP default credentials – disable SNMP default query of discovered device using V2/Community
string public.

• Disable SNMP queries – disable all SNMP queries

• Disable Vmware Hypervisor Query – if a device matches a login credential, the first interrogation determines if
the device responds a Vmware Hyervisor query. Disabling this default query can reduce query time.

4.3. Configuration Tab Details 17



Netmapper User Guide, Release 2.1.1722

• Disable firewall status check when determining node roles – when determining a role (i.e, NFS server) one of the
qualifiers is if the firewall allows communication over the port(s) associated with that role. This option disables
the firewall check.

• Disable local host discovery/query – the local host (netmapper host) will not be included in discovery or query
(if discovered by Nmap, it will be deleted from the device list, preventing further queries to it).

• Enable Rlogin only for Routers/Switches – this enables remote login to be attempted only if a device has been
determined to be a router or switch. For this to work, SNMP query has to be enabled and the target device
responsive to SNMP query. This is intended to reduce Netmapper-generated network traffic.

• Save raw default/role query data files in XML – this saves the default query data and role query data
files as archive file objects, under rolename hasRawQueryDataFiles (XML tag name) and directory name
Raw_Query_Data_Files, with filenames of default_query_data.txt and role_query_data.txt (role query file will
not exist if node was not queried for role information). These are the raw data files that are parsed to generate
XML data. These are useful if one is curious as to what information is being queried and how it is being query
(also useful for debugging parsing problems). Using this option will significantly increase XML file size.

• Disable dynamic query/parse import – this disables importing of dynamic/query parse code from the <in-
stalldir>/plugins/queryparse directory.

• Disable user custom query – this disables execution of user custom query commands.

• Max Parallel SNMP Queries, Max Parallel Rlogin Queries – limit the maximum number of parallel
SNMP/Rlogin queries to these values. This allows user control of network bandwidth used by Netmapper
queries.

• SNMP/Rlogin SSH/Rlogin Wmi/PS Query Delay – time in seconds between individual queries during an SNMP,
Rlogin SSH, Rlogin Wmi/PS interrogation. This option allows user control of network bandwidth used by
Netmapper queries.

• SNMP/Rlogin Connection Retries – number of retries for failed SNMP/Rlogin connection attempt.

• SNMP/Rlogin Query Timeout – timeout in seconds for a non-responsive SNMP/Rlogin query.

4.3.4 Miscellaneous configuration options

The Misc group contains miscellaneous configuration options.

Fig. 4.20: Screenshot of the Misc group options.

• Enable Custom XML Tagging – enable dynamic import and execution of user Python code after the update
topology step of a discover/gather action. Seed the documentation section Custom XML Tagging for more
details.

• Keep Intermediate Temporary Files – keep all Netmapper temporary files instead of deleting them, useful for
debugging.

• Browse (directory for temp files) – Use this browse button to change the directory used for temporary files.

• Browse (directory for rlogin data files) – Use this browse button to change the directory used for storing data
files retrieved during remote login. The files are stored in a directory tree named RLoginNodeConfigData.

18 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

• Browse (PDF Viewer) – This sets the viewer used for displaying static PDF graphs. You are prompted to browse
to a PDF viewer the first time a static PDF graph is generated if a PDF viewer has not been set yet. Use this
button to change the PDF viewer at any time.

• Browse (TXT Viewer) – This sets the viewer used for displaying text files. You are prompted to browse to a text
file viewer the first time an archive file is viewed in the View Devices tab using the View File button. Use this
button to change the text file viewer at any time.

• Browse (User Query) – This sets the XML file path for user custom query.

4.4 Visualization Tab Details

The Visualization tab is used to display Layer 3, Layer 2, and Virtual network plots.

Fig. 4.21: Screenshot of the Visualization tab.

4.4.1 Update List From Filters button

Any netobjects current in memory will be displayed in the Node List when the Visualization tab is selected. The
Update List From Filters button is used to update the Node List based on the Node Filters controls. As an example,
the figure below shows updating the Node List with only nodes marked as routers.

4.4. Visualization Tab Details 19



Netmapper User Guide, Release 2.1.1722

Fig. 4.22: Screenshot of the Node Filters options.

The Networks combo box lists the known networks of the nodes currently in memory. Selecting a network, then
clicking on Add will add the network to the Network list control. This can be repeated multiple times to add more than
one network to the Network list control.

Note: There will only be networks listed if a device like a router has been queried either via SNMP or remote
login and routing table information retrieved.

Fig. 4.23: Screenshot of using the Networks control options.

Clicking on Update List From Filters updates the Node List with all nodes from the Network list networks as shown in
this figure.

20 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.24: Updating the Node List.

If Netmapper has retrieved information via remote login from a Vmware Vcenter server, then it may have found
VirtualApp managed objects (a vApp contains a collection of virtual machines). These vApps will be available in the
vApp Name combo box. Selecting a vApp from the combo box, then clicking on the Update List From Filters button
will put all of the nodes in the vApp into the Node List control. These actions are shown in the next figures.

Fig. 4.25: Screenshot of selecting a vApp.

4.4. Visualization Tab Details 21



Netmapper User Guide, Release 2.1.1722

Fig. 4.26: Screenshot of updating a vApp.

4.4.2 Add All button

The Add All button adds all nodes currently in memory to the Node List.

Fig. 4.27: Using the Add All button.

4.4.3 Dynamic Graphs

L3/L2/vNet plotting

Once nodes have been added to the Node List control, a layer 3 (L3), layer 2 (L2), or virtual network (vNet) plot can
be created. An L3 plot can be created only if nodes have L3 links, which are created from retrieved routing table

22 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

information. An L2 plot can be created only if nodes have L2 links, which are created from retrieved bridge table
information. A vNet plot can be created only if nodes are connected to virtual networks (e.g. virtual machines nodes
were retrieved by API query from an ESXi or vCenter server).

An L3/L2/vNet plot can be displayed either as a dynamic pan/zoom window, static PDF, or static Visio drawing via
the Graph Type combo box.

Fig. 4.28: Screenshot of the Graph Type box.

For example, selecting the dynamic option in the Graph Type control and clicking the L3 Map button produces an L3
dynamic plot of the nodes in the Node List control.

The type of L3 links plotted depends on the options selected in the L3 Options section.

Fig. 4.29: Screenshot of the L3 Options.

The Address Family combo box allows plotting of either IPv4 links or IPv6 links.

Fig. 4.30: Screenshot of the Address Family box.

The Routing Table combo box allows plotting of links that belong to a particular VRF instance.

4.4. Visualization Tab Details 23



Netmapper User Guide, Release 2.1.1722

Fig. 4.31: Screenshot of the Routing Table box.

The Excluded Networks type-in field allows the user to specify networks whose connections should be excluded from
the graph. This is useful to remove connections corresponding to a global management network.

Fig. 4.32: Screenshot of the Excluded Networks field.

The Show subnets checkbox will show subnets as plot objects in the graph, directly exposing subnet connections.

Fig. 4.33: Screenshot of the Show subnets field.

For L3 graphs, edge labels can be turned on via the Show edge labels in the Plotting Options section. Edge labels
display the last two octets of the IP address destination. Currently, edge labels do not exist for other graph types but
this may change in in the future.

24 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.34: Screenshot of the Show edge labels field.

An example of a dynamic L3 graph is shown in the following figure. The node size and zoom level are controlled by
the controls along the bottom of the window. This graph does not have subnets or edge labels turned on.

Fig. 4.35: An example of a dynamic L3 graph.

The same graph is shown below with edge labels and subnets enabled.. This graph has had its nodes re-arranged from

4.4. Visualization Tab Details 25



Netmapper User Guide, Release 2.1.1722

the default layout. Both of these graphs are created from the same L3 connection objects present in the XML.

Fig. 4.36: An example of a dynamic L3 graph with subnets shown.

The plot in the previous figure is an L3 graph using IPv4. Multiple IP addresses assigned to a node means that the
node has multiple interfaces.

PDF versions (as well as XPS) of dynamic graphs can be generated by using the Print button on the dynamic graph
window.

Initially, nodes are automatically arranged and spaced on the plot. The Plotting Options control section has a combo
box that allows the user to choose either the twopi or dot programs for node arrangement (twopi and *dot are from the
Graphviz distribution).

Fig. 4.37: Screenshot of the Plotting Options section.

The twopi program gives a radial node distribution while the dot program gives a tree structure.

The Overlap Removal combo box for chooses a program from the Graphviz distribution for handling node overlap.
The Rank Separation slider control value is passed as a parameter to the chosen program. The voronoi program gives
good results with large graphs, but the user is encouraged to experiment.

26 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.38: Selecting the voronoi program for use in plotting large graphs is suggested.

Double-clicking on a link between two nodes in a dynamic graph displays a pop-up window that shows the interfaces
that connect both side of the link.

Fig. 4.39: Screenshot of the interfaces pop-up while viewing a dynamic graph.

Double-clicking on a node displays a pop-up window with the node description.

4.4. Visualization Tab Details 27



Netmapper User Guide, Release 2.1.1722

Fig. 4.40: Screenshot of the node pop-up while viewing a dynamic graph.

Dynamic graph customization

Once a dynamic graph has been plotted, the user can drag nodes around to position them as desired, and then use the
Save Reference Graph button in the dynamic plot window to save this arrangement.

Fig. 4.41: Screenshot of the Save Reference Graph button.

To use this reference graph during dynamic graph plotting, use the Browse button for the dynamic plot reference file
to browse to the saved reference file, and then plot the graph again.

28 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.42: Browsing for the saved reference file.

Fig. 4.43: A dynamic L3 graph created from a reference file.

This does a graph comparison of the reference graph against the nodes in-memory. Links/nodes that match are high-
lighted in green; missing links/nodes are highlighted in red; and new links/nodes are highlighted in yellow.

The Visio plotting section that follows gives more examples of graph comparisons as its graph comparison works in
the same manner.

4.4. Visualization Tab Details 29



Netmapper User Guide, Release 2.1.1722

Dynamic graph search

A dynamic graph can be searched by ip address, ip network, or hostname/resolved ip address name by entering these
in the search type-in line at the bottom of the graph window and then clicking the Search button. Any nodes that
match the search criteria will be selected. The isRegEx checkbox indicates if the search string is a regular expression,
used to match hostname/resolved ip address names. If regular expressions are not used, then multiple ip addresses, ip
networks, hostnames, resolved ip address names can be entered on the search type-in line, separated by whitespace.

In the example below, nodes belonging to networks 200.168.3.0/24, 192.168.0.0/24 are searched for. The search
returned 8 nodes, which are selected.

4.4.4 Visio plotting and graphical comparison

If Netmapper detects that Visio is installed, then the static-visio option is available via the Graph Type combo box.
This opens the Visio application and plots the graph in a Visio drawing using stencils from the netmapper.vss stencil
file in the Netmapper installation directory.

An example of a Visio output plot is shown here. Each stencil has two custom properties named nm_Hostname and
nm_IPAddresses. The nm_Hostname property is filled with either the FQDN or hostname, if available, from the
corresponding network device. The nm_IPAddresses property is a list of all IP addresses associated with the interfaces
of this network device. These property values are populated when the drawing is generated.

30 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.44: Example Visio plot.

An alternative to simply plotting the graph in a Visio drawing is to graphically compare the Netmapper network against
another network that is specified by a Visio reference file. The reference file is selected by the Browse button in the
Plotting Options section before using one of the L2/L3/vNet buttons.

Fig. 4.45: Screenshot of the selecting a Visio Reference Graph.

The Visio stencil file with master shapes used to produce a Visio reference graph has the following restrictions:

• The stencil file is named netmapper.vss and is located in the installation directory.

• The master shapes (except for the Connector shape) must have the two custom properties nm_Hostname and
nm_IPAddresses on them as string properties.

• The master shapes (except for the Connector shape) must also have a property named nm_Type of type string,
and this property must have one of the following values: Router, Host, Switch, Subnet, Vnet, or Printer. The
Host master shape is used for any object that is not a router, switch, subnet, vnet, or printer. The stencil must
have a master shape for each of these types. The nm_Type property is used to identify which master shape in the
stencil to use for representing a Netmapper object.

• The stencil must have a connector master shape named Connector. It does not require any other Netmapper-
related properties.

4.4. Visualization Tab Details 31



Netmapper User Guide, Release 2.1.1722

The Visio reference file has the following restrictions:

• The drawing to be compared must be on the first page.

• Any stencils representing network objects to be compared must have the two custom properties nm_Hostname
and nm_IPAddresses on them; shape name does not matter (except for the Connector master shape). One of
these two fields should have a value in them that is to be compared against the network objects identified by
Netmapper. The nm_IPAddresses property can be a comma separated list of IP addresses. The nm_Hostname
value can either be a FQDN or a simple hostname, and the comparison is case insensitive. The nm_Hostname
value, if present, is matched first. If this fails, then the nm_IPAddresses property is matched.

• Do not use grouping in the drawing that includes any Netmapper host objects or connectors; the host objects
and connections should be all on the same object level. You can add any other objects to the drawing that you
wish, as long they are not grouped with Netmapper host objects or connectors.

When comparing network objects, a hostname comparison is done first.

• If the FQDN and/or hostname is available (these are retrieved by remote login), then these are compared against
the nm_Hostname property (if both FQDN and hostname are available, then both are compared to see if either
match).

• If neither FQDN or hostname on a Netmapper object is available, then a resolved IP address name is used if one
is available. It is assumed that all IP addresses on a object resolve to the same name, so the first IP address with
a resolved named is used.

If the hostname comparison fails, then IP addresses are compared. If any IP address of the discovered Netmapper
object matches an IP address from a nm_IPAddresses property, then the device matches.

Nodes and edges in the reference graph are highlighted in green. This figure shows an example of everything matching
in the reference graph.

32 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.46: Screenshot of matching Visio graphs.

A graph mismatch occurs if:

• The Netmapper network has extra node(s) or edges(s) over what is in the reference graph. These extra nodes are
added to the reference drawing and highlighted in yellow.

• The Netmapper network is missing node(s) or edges from the reference graph. These missing nodes are high-
lighted in red in the reference drawing.

4.4. Visualization Tab Details 33



Netmapper User Guide, Release 2.1.1722

Fig. 4.47: Screenshot of a Visio graph with extra nodes.

34 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.48: Screenshot of a Visio graph with missing nodes.

The following example shows a Visio reference diagram comparison that has missing edges, missing nodes, and extra
edges.

4.4. Visualization Tab Details 35



Netmapper User Guide, Release 2.1.1722

Fig. 4.49: Screenshot of a Visio graph that is very different.

The usage model for the Visio export/diff capability is that Netmapper is used to export an initial graph, that is then
annotated by the user as desired to be later used as a comparison graph.

For example, the graph below is a Visio export with nodes minimally re-arranged.

Fig. 4.50: Initial Visio graph with no annotation.

This graph is then annotated by the user with additional graphics and font changes to make it look nicer.

36 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.51: Visio annotated graph.

The annotated graph can then be used for comparison purposes if the node objects and connections that were originally
exported from Netmapper are preserved. The next image shows this graph used as a reference graph; note the green
highlights mean that all nodes and connections matched.

Fig. 4.52: Visio annotated graph used as a reference graph.

4.4. Visualization Tab Details 37



Netmapper User Guide, Release 2.1.1722

4.4.5 Static PDF Graph Type

The static-pdf choice from the Graph Type combo box in the Visualization group box displays a graph as a static PDF.
The first time this option is chosen, the user is prompted to browse to a desired PDF viewer executable (typically,
Acrobat.exe). This choice is then stored as a configuration option so that it does not have to be repeated.

Note: The static-pdf choice is a holdover from older versions of Netmapper and may be removed in the future; PDFs
can be now generated from the dynamic and static Visio options.

4.5 Credentials Tab Details

The Credentials tab is used to enter/display credentials for SNMP and Remote login.

Fig. 4.53: Screenshot of the Credentials tab.

4.5.1 General controls

Three types of credentials are supported through the Type combo box: SNMP v1/2c, SNMP v3, and Login.

38 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.54: Screenshot of the credential login type combo box.

The text edit control next to the Type control is used to specify the target for this credential. The target can be specified
as a single host target (either IP address or hostname) or as a network in CIDR format. When Netmapper searches for
a credential match to a node, it will always use a single host credential if present before using a network credential.
An IPv4 network credential of 0.0.0.0/0 will match any IP address.

Fig. 4.55: Screenshot of the credentials entry interface.

When a credential is entered, the Create New button must be clicked for the credential to be created and entered into
the Credentials list on the left-hand side.

Clicking on a displayed credential in the Credentials list will display the credential details in the appropriate controls.
If these details are modified via the credential controls, then clicking the Update Selected button will make propagate
these changes to the credential.

The Test Selected Credential button is used to test a selected credential. For a SNMP credential, this means making a
request for the node’s system description. For a login credential, this means achieving a successful login connection to
the node. If the selected login credential specifies a network, then the text edit field below the Test Selected Credential
button must be filled in with either an IP address or hostname in the target network.

The buttons underneath the Credentials list can be used to delete the selected credential (Delete Selected), load cre-
dentials from a file (Load), save credentials to the file they were loaded from (Save), or save the credentials to a new
file (Save as. . . ).

Fig. 4.56: Screenshot of the credentials editing interface.

When saving or loading credentials, the user is prompted for a passphrase. This passphrase is used to encrypt sensitive
portions of the credential. Credentials are saved in an XML format, so specify an .xml extension when saving.

4.5. Credentials Tab Details 39



Netmapper User Guide, Release 2.1.1722

4.5.2 SNMP v1/2c credential

SNMP v1/2c credential entry uses a Text Edit control for entering a community string. The Show checkbox control,
when checked, will display the true contents of this field.

During the SNMP information gathering phase, all devices are probed with a SNMP v1/2c credential with community
string equal to public if no other SNMP credential is found for this node (this can be disabled by a configuration
option). A UDP port number other than the 161 default can be entered for the credential using the type-in box.

Fig. 4.57: Entering an SNMP v1/2c credential.

4.5.3 SNMP v3 credential

The SNMP v3 credential control is shown below. SNMP v3 credentials have many optional parts, and it depends on
how the target devices is configured as to what parts are needed in an SNMP v3 credential.

Fig. 4.58: Entering an SNMP v3 credential.

The username is non-optional and must be filled in for the credential. The Context and EngineId are optional fields
that can be specified. The Context field is simply a string that can be used to disambiguate a query to a device that
has multiple copies of a MIB. The EngineId, if required, must be specified as a hex number without a leading 0x (ie.
80000009010A0101C1). An EngineId can be up to 32 bytes in length (so up to 64 hex digits) and is the EngineId of
the remote SNMP device. Typically, this does not have to be specified.

The Authentication combo box has three choices: None, MD5, and SHA-1. If the Authentication choice is not None,
then the associated password text edit must be filled in.

Fig. 4.59: Entering the authentication for an SNMP v3 credential.

40 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

The Encryption combo box has five choices: None, DES, AES-128, AES-192 (Cisco), AES-256 (Cisco) and 3DES
(triple-DES). If the Encryption combo box choice is not None, then the associated password text edit must be filled in.
The encryption choices of AES-192 (Cisco) and AES-256 (Cisco) implement the Cisco method of AES-192/256 and
may not work with other vendors that support SNMPV3 AES192/256 encryption.

Fig. 4.60: Entering the encryption method for an SNMP v3 credential.

An authentication/encryption combination of none/none is typically referred to as the noAuth/noPriv selection. Valid
combinations of authentication/encryption are: none/none (noAuth/noPriv), non-none/none (Auth/noPriv), and non-
none/non-none (Auth/Priv). If Encryption is not none, then authentication must be something other than none as well
(a choice of noAuth/Priv is illegal). Authentication and Privacy passwords must be 8 characters or greater.

SNMP v3 examples

It can be difficult to configure SNMP v3 for correct authentication due its many options. If problems are encountered
with configuring Netmapper SNMP v3 credentials, then use a third-party tool to independently verify the SNMP v3
credentials. An excellent tool is SnmpGet by *SnmpSoft*.

The following three images show a Netmapper SNMP v3 credential test to a TP-LINK managed switch; one of the
images show the same access using the SnmpSoft SnmpGet tool.

4.5. Credentials Tab Details 41

http://www.snmpsoft.com


Netmapper User Guide, Release 2.1.1722

Fig. 4.61: SNMP v3 credential testing for a TP-LINK managed switch.

42 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.62: SNMP v3 credential test output for a TP-LINK managed switch.

Fig. 4.63: SnmpSoft SnmpGet test output for a TP-LINK managed switch.

The following three images show a Netmapper SNMP v3 credential test to a Cisco Small Business router; one of the
images shows the same access using the SnmpSoft SnmpGet tool.

4.5. Credentials Tab Details 43



Netmapper User Guide, Release 2.1.1722

Fig. 4.64: SNMP v3 credential testing for a Cisco Small Business router.

44 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.65: SNMP v3 credential test output for a Cisco Small Business router.

Fig. 4.66: SnmpSoft SnmpGet test output for a Cisco Small Business router.

4.5.4 Login credential

The login credential controls are shown below.

4.5. Credentials Tab Details 45



Netmapper User Guide, Release 2.1.1722

Fig. 4.67: Screenshot of the login credential controls.

Remote login interrogation is done either by SSH or by WMI/Powershell. The OS Type combo box has the following
choices: none, linux, windows, or custom. These choices are tags that decide whether the SSH or WMI/Powershell
method is used on the remote device.

Fig. 4.68: Screenshot of the OS Type combo box.

The linux choice means that an SSH connection will be made. When an SSH connection is established, commands
are executed to determine the OS type/version (Centos, Ubuntu, Cisco appliance, etc). After the OS type/version is
determined, commands specific to that OS type/version are executed to return information.

The windows choice means that the WMI/Powershell interrogation method is used. A none OS type means that both
SSH and WMI/Powershell connection attempts are made, with the order dependent upon the OS guess returned by the
Nmap discovery scan. If the OS guess returned by Nmap is neither Linux or Windows, or if no OS guess is present,
then an SSH connection is tried first, followed by a WMI/Powershell connection attempt.

The custom choice allows the user to specify a custom OS tag for this credential, and specify the connection type. In
the example below, a custom tag of cisco is used with the SSH protocol. It is convenient to think of the linux and
windows choices as short cuts for custom tags that use the SSH and WMI/Powershell protocols respectively.

Fig. 4.69: Options for remote login.

The Username/Password text edits must be filled in. The Elevate Password text edit is optional. For Cisco devices,
this is the password needed for elevation to the highest privilege level via the enable command if the user does not
have this privilege on initial login. This password is only used if it is 1) supplied, and 2) if it is detected after login to a

46 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Cisco device that the user does not have access to the highest privilege. For a Cisco ASA device, the Elevate Password
should always be supplied as the highest privilege is needed for executing even basic show commands.

If the Use Keyfile checkbox is selected, then the password field is the password for the private key file specified in the
SSH Private Key File text edit control (this field can be left blank if the SSH file does not have a password). The Use
Keyfile option is only allowed for credentials with OS type of linux or custom with proto of SSH. If an SSH Key file
is used for a Linux file login, then the Elevate Password field should be the password of the user, as this is needed
for sudo operations. For Linux systems, if the user is root and the SSH key file is for the root user, then the Elevate
Password field can be left empty as sudo commands are not used for the root user (warning, the root login is generally
not available by default on Ubuntu systems).

To target the same host (or network) with different users, the credentials must be differentiated by the custom tag
(Credentials are indexed by credential type, target name, and OS type (if OS type is custom, then also by custom tag).
This can cause a netobject to be successfully matched against more than one credential. In this case, the matching
credentials are tried in an unspecified order with the first one that achieves a successful connection used to return data
for that netobject.

4.6 Network Difference Tab Details

This figure shows the Network Difference tab which is used to intelligently compare the XML files of two networks.

Fig. 4.70: Screenshot of the Network Difference tab.

The Diff Networks button prompts the user to browse to two different XML files. Once the files are specified, the XML
files are loaded, and then an intelligent in-memory difference of the resulting network objects is performed and the

4.6. Network Difference Tab Details 47



Netmapper User Guide, Release 2.1.1722

results are displayed in the two output panes (Network 1 and Network 2).

The Diff Networks and Log buttons prompt the user for a third file to which any differences are saved.

The Repeat Diff button repeats the network difference on the currently specified files – this is useful if any options
have been changed in the Options control.

The Clear Results button clears the result output panes.

4.6.1 Options Control

The Options control provides the user with control over the fidelity of the network comparison.

Node Type control

The Node Type controls specify what nodes are to be compared. The three checkboxes specify nodes by type (Routers,
Switches, Others). The All button causes all checkboxes to be selected while the Clear button clears all checkboxes.

Interfaces control

The Interfaces control specifies the fidelity of the comparison of node information found in interfaces.

• IPv4 – compare IPv4 addresses

• IPv6 – compare IPv6 addresses

• PhyPorts – compare physical ports (returned by SNMP/Rlogin query)

• NetPorts – compare scanned ports (returned by Nmap scanning). It is suggested that this be disabled if using the
network difference for regression testing as Nmap port scanning can be unreliable.

• L3Conns – compare L3 topology connections

• L2Conns – compare L2 topology connections

• Protocols – compare routing protocols identified for this interface

Miscellaneous control

The Misc control specifies the fidelity of the comparison of node information outside of MAC interfaces. Most of this
data is retrieved via remote login and not by SNMP.

The majority of these options are self-explanatory. The OS guess is returned by Nmap scanning and is based upon
the port signature found. It is suggested that this be disabled if using the network difference for regression testing as
Nmap port scanning can be unreliable.

The Role Data comparison is performed on files unpacked from the XML rloginDataObjects which are retrieved by
remote login. The files are simply text-diffed and the line numbers that differ are reported in output panes (only the
line numbers are reported, not the actual differences themselves).

Exceptions file

The exceptions file is a method for doing fine grain exceptions during network difference that works in addition to the
previous methods for including or excluding portions of an object to difference. Currently, exclusion file checking is
only implemented a subset of the XML data.

48 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

Fig. 4.71: Entering an exceptions file.

An exclusion file is an XML file with the schema shown here.:

<exceptionTargets>
<exceptionTarget target=ipaddress/ipnetwork/hostNamePattern os=osStringPattern>
<schemaSection name=schemaSectionName>
<exception attrName1=pattern attrName2=pattern .. attrNameN=pattern />
<exception attrName1=pattern attrName2=pattern .. attrNameN=pattern />
... multiple exceptions ...
<exception attrName1=pattern attrName2=pattern .. attrNameN=pattern />
</schemaSection>

</exceptionTarget>
</exceptionTargets>

The exceptionTarget specifies a node(s) for the attached exceptions. It has two attributes:

• target : either an ip4/ip6 address, ip4/ip6 network, or a hostname regular expression pattern (the pattern ‘.*’
matches any hostname. If an ip6/ip6 network is specified, then the host will match this target if it has any IP
address in that network. This attribute must be specified.

• os : specifies a regular expression that is matched against the OS name retrieved by remote login; this attribute
is optional. The special value ‘*’ says to ignore OS in terms of matching (this is the same as not specifying the
os attribute in the exceptionTarget).

The schemaSection specifies a schema section for the attached exceptions. The name attribute specifies the schema
section; currently only the following are supported:

• fileshares

• services

• iproutes

• archive

Each exception specifies an exception for this schema section. One or more attribute names can be specified in the
exception, these names match the attribute names found in the XML for this schema section. The value of the attribute
name is either a regular expression pattern that is matched against the value of this attribute, or it is the special pattern
“*” which means to ignore this attribute all together when performing a network difference (note that “*” is not a wild
card regular expression pattern, “.*” is the wildcard regular expression pattern that will match any attribute value). If
an exception match is found, then this is excluded from network difference comparison.

The following will ignore the startmode of any service named BITS for a target that has a Windows OS. So, if one
target has the BITS service with startmode manual, and the other target has a BITS service with startmode automatic,
this difference is not reported as the startmode attribute values are not compared in this case. However, if the BIT
service does not exist on one of the two nodes, then this difference is reported.:

<exceptionTargets>
<exceptionTarget target=”*” os=”.*Windows*.”>
<schemaSection name=”services”>
<exception name=”BITS” startmode=”*”/>

4.6. Network Difference Tab Details 49



Netmapper User Guide, Release 2.1.1722

</schemaSection>
</exceptionTarget>

</exceptionTargets>

The following will cause the BITS service to be ignored during comparison.:

<exceptionTargets>
<exceptionTarget target=”*” os=”.*Windows*.”>
<schemaSection name=”services”>
<exception name=”BITS”/>
</schemaSection>

</exceptionTarget>
</exceptionTargets >

The following will ignore any fileshare named “E$” on windows targets.:

<exceptionTargets>
<exceptionTarget target=* os=’.*Windows*.’>
<schemaSection name=’fileshares’>
<exception name=”E$”/>

</schemaSection>
</exceptionTarget>

</exceptionTargets>

The following ignores several attributes during network difference of iproutes for all hosts.:

<exceptionTargets>
<exceptionTarget target=*>
<schemaSection name=’iproutes’>
<exception metric1=”*” metric2=”*” metric3=”*” metric4=”*” metric5=’*’ ifindex=”*”/

→˓>
</schemaSection>

</exceptionTarget>
</exceptionTargets>

The following combines all of these exceptions together.:

<exceptionTargets>
<exceptionTarget target=*>
<schemaSection name=’iproutes’>
<exception metric1=”*” metric2=”*” metric3=”*” metric4=”*” metric5=’*’ ifindex=”*”/

→˓>
</schemaSection>

</exceptionTarget>
<exceptionTarget target=* os=’.*Windows*.’>
<schemaSection name=’fileshares’>
<exception name=”E$”/>

</schemaSection>
<schemaSection name=”services”>
<exception name=”BITS”/>

</schemaSection>
</exceptionTarget>

</exceptionTargets>

The following XML snippet shows two exceptions that cause file file comparison to be skipped for retrieved role data
files for particular roles.:

50 Chapter 4. Usage Overview



Netmapper User Guide, Release 2.1.1722

<schemaSection name="archive">
<!-- This is neeeded as some elements in this file have timestamps, other data that
→˓changes run-to-run -->
<exception rolename="HyperV_Hypervisor" archiveFile="vmdata.config"/>
<exception rolename="Windows_Server" archiveFile="windowsfeatures.xml"/>

</schemaSection>

The vmdata.config file has some timestamps that cause simple file comparison to fail. The windowsfeatures.xml file
has some integer hash values that change each time the file is created, causing simple file comparison to fail.

4.7 View Devices Tab Details

This figure shows the View Devices tab which is used to quickly peruse node data collected through discovery, port
scanning, SNMP, remote login, and topology inference.

Fig. 4.72: Screenshot of the View Devices tab.

Netobjects are listed by name and by network. A netobject appears only once in the Listed By Name section. The
name will be the host name if it is available, else the UUID for the netobject is used.

A netobject can appear more than once in the Listed by Network Connection section if it is attached to more than one
network. The network section lists the discovered networks, with nodes attached to that network under each network.

4.7. View Devices Tab Details 51



Netmapper User Guide, Release 2.1.1722

Any nodes for which network membership cannot be determined are grouped in an Unknown Network classification.

The Open One Level button will open all sub-items under the currently selected item by one level. Multiple clicks on
this button will quickly open all sub-items.

The Close All button will close all open sub-items under the currently selected item.

The View File button opens the currently selected Rlogin Archive file in a text editor. The first time this button is used,
the user is prompted to browse to a text editor used for displaying the file. This choice is saved in a configuration
option so the user is not prompted for this again.

As an example, clicking on the View File button while the windowsfeatures.xml item is selected opens the windows-
features.xml file in a text editor.

Fig. 4.73: Viewing the windowsfeatures.xml file.

If these netobjects were loaded from an XML file, then the archive file is in a compressed format in memory. Clicking
on the View File button expands the archive data for this netobject to the same directory that the XML file was loaded
from, under a directory named RloginNodeConfigData. If this file is edited and saved, and then the netobjects are
saved back to XML, the XML will contain the changed data. Closing Netmapper leaves the expanded data in the
RloginNodeConfigData directory on disk; this directory must be manually deleted if cleanup is desired.

If these netobjects are from a scan and the netobjects have not yet been saved to XML, then the archive data is already
expanded and is in a temporary directory.

52 Chapter 4. Usage Overview



CHAPTER

FIVE

CUSTOM XML TAGGING

During a discover/gather sequence, custom Python code can be dynamically imported/executed after the topology
update step if the Enable Custom XML Tagging check box is checked on the Configuration tab. The intended use of
this capability is to add custom XML tags to netobjects based on user criteria.

This code is imported from the <installDir>/plugins/customtag/implementation.py file. The function doCustom-
Tagging(database) is called, where the database parameter is the Python object used to access all Netmapper ob-
jects/methods. The Python interpreter used internally by Netmapper is version 3.4.

There are some examples of this capability provided in this directory. Copy an example to implementation.py and
enable the custom tagging option in the Configuration tab. After Netmapper is started, clicking on the Custom Tag
button will import and execute this code. In the example below, the hello_world.py example was copied to the imple-
mentation.py file.

Fig. 5.1: An example of custom tagging.

Other examples require an XML file to be loaded so that there are objects present to be manipulated. See the comments
at the top of each example file for more explanation. The Netmapper Python API is documented in the appendix.

53



Netmapper User Guide, Release 2.1.1722

54 Chapter 5. Custom XML Tagging



CHAPTER

SIX

USER CUSTOM QUERY

Custom user queries for a query Engine (i.e., Centos6, Centos7, Ubuntu, etc) can be executed during a node query.
These queries are loaded from an XML file with a default path of <installDir>/user_query.xml. The default file is
shown below:

<queryEngines>
<queryEngine name="centos6">

<userQuery name="netstat -lnp" useSudo="true"/>
</queryEngine>
<queryEngine name="centos7">

<userQuery name="ss -lnp" useSudo="true"/>
</queryEngine>
<queryEngine name="kali">

<userQuery name="netstat -lnp" useSudo="true"/>
</queryEngine>
<queryEngine name="vyos">

<userQuery name="netstat -lnp" useSudo="true"/>
</queryEngine>
<queryEngine name="ubuntu">

<userQuery name="netstat -lnp" useSudo="true"/>
</queryEngine>

</queryEngines>

The user_query.xml file contains multiple queryEngine sections (see the section on dynamic query/parse import for
a list of Netmapper query engines). The name attribute is the id for the query engine, which must match the value
returned by the getId() method of that query engine. Each queryEngine section can contain multiple userQuery entries.
The name attribute is the command to execute, and the useSudo attribute must be true if sudo is to be used for command
execution.

The command output is stored in the commandoutput section of the XML, and is displayed in the Command Output
section of the device in the View Devices tab. The output of user queries is not parsed in any way except to display it
in the View Devices tab.

The Configuration tab has a browse button that allows the user to browse to a custom query file that is different from
the default. User custom query can also be disabled via the Configuration tab.

Custom user queries are only supported for stream queries (i.e., SSH); windows wmi/powershell query does not
support custom user quries.

55



Netmapper User Guide, Release 2.1.1722

56 Chapter 6. User Custom Query



CHAPTER

SEVEN

REMOTE LOGIN AND NODE IDENTIFICATION

This section details role assignments and data retrieved during node remote login.

7.1 Windows OS Default Data Retrieval

This table gives a summary of the default data retrieved from each Windows host, method used to retrieve the data,
and where the data is stored (XML means the data is stored in XML tags, Archive data means the data is stored in a
file in an rloginDataObject).

Windows OSes that have been tested for data retrieval are 2008 server, 2012 Server, and Windows 7.

Data Name Query Method XML Data or Archive Data?
hostname WMI XML (hostname)
OS type, version WMI XML (os)
CPU info WMI XML (physicalserver, cpus)
Network interfaces WMI XML (interface)
Disk information (local and mapped) WMI and Remote Registry XML (physicalserver, disks)
Routing table WMI XML (iproute)
Applications WMI XML (applications)
Services WMI XML (services)
Firewall Profiles Remote Registry XML (firewall)
Firewall Rules Remote Registry XML (firewall)
Routing Enabled Remote Registry XML (node attribute)
OS patches WMI XML (os, patches)
SMB File shares WMI XML (fileshares)
Routing Enabled Determination WMI XML (isRouter=True) attribute

All of these queries are done by the Powershell script get_all_host_info.ps1 in the code/netmapper directory.

7.2 Windows OS Role Data Retrieval

The following table gives a summary of the roles and role data retrieved from each Windows host. The second column
gives the XML attribute in the NetObject for this host that identifies this role. The third column gives the directory
name that contains the retrieved role data when the compressed role data is expanded to disk (this value is N/A if the
role data is stored directly in the XML). The fourth column describes the role data. If it is a filename, then this is
the filename that contains the data when the compressed archive for the role data is expanded to disk. See the XML
description for rloginDataObjects for how the compressed archive data is expanded to disk.

Windows OSes that have been tested for data retrieval are 2008 server, 2012 Server, and Windows 7.

57



Netmapper User Guide, Release 2.1.1722

Role XML At-
tribute

Rolename tag in com-
pressed archive

Config Data

Domain Con-
troller

isDomain-
Controller

N/A Domain controller sub-roles stored directly in XML
under domainControllerRole

Exchange
Server*

isEx-
change-
Server

N/A Exchange server sub-roles stored directly in XML
under exchangeServerRoles

DNS Server is-
DnsServer

N/A DNS A records stored directly in XML under
windnsrecords

DHCP Server*
**

isD-
hcpServer

Dhcp_Server File named dhcpserver.config

Web Server*
**

isWeb-
Server

Web_Server File named applicationHost.config

WSUS Server isWsusServer Wsus_Server File named wsus.config
NFS
Server***

isNfsServer Nfs_Server File named nfs.config

Windows
Server** ****

isWin-
dowsServer

Windows_Server File named windowsfeatures.xml. Result of Power-
shell command get-windowsFeature

Tomcat
Server* **

isTomcat-
Server

Tomcat_Server Various config files: web.xml, tomcat-users.xml, con-
text.xml, server.xml

Snort Server*
**

isSnort-
Server

Snort_Server Various config files: classification.config,
snort.config, reference.config, threshold.conf

• * - Query will not succeed unless the IP address of this host can be resolved with NSlookup.

• ** - Data retrieval method relies on remote Powershell command execution.

• *** - Different commands used for data retrieval method for Windows 2012 server versus Windows 2008 server.
Windows 2008 method requires remote command execution.

• **** - Only works on Windows 2012 Server and above.

All of these queries are done by the Powershell script get_all_role_info.ps1 in the code/netmapper directory.

7.3 Linux OS Default Data Retrieval

The following table summarizes the default data retrieved for Linux OSes. The Linux OSes/distributions tested are
CentOS 6, CentOS 7, Ubuntu Workstation, and Kali.

58 Chapter 7. Remote Login and Node Identification



Netmapper User Guide, Release 2.1.1722

Data Name OS XML Data or Archive Data?
hostname All vari-

ants
XML (hostname)

OS type, version All vari-
ants

XML (os)

Arp cache All vari-
ants

XML (interface)

CPU info All vari-
ants

XML (physicalserver, cpus)

Network interfaces All vari-
ants

XML (interface)

Disk information (lo-
cal and mapped)

All vari-
ants

XML (physicalserver, disks)

Routing table All vari-
ants

XML (iproute)

Applications All vari-
ants

XML (applications)

Services All vari-
ants

XML (services)

Processes, linkage of
processes to ports

All vari-
ants

Not saved to XML, used internally for role determination

Firewall Rules CentOS 7,
Ubuntu

XML (firewall)

Firewall Rules CentOS 6 /etc/sysconfig/iptables file stored as compressed archive
Firewall Rules Kali-Linux Output of iptables-save command captured and saved as compressed

archive
OS patches All vari-

ants
XML (os, patches)

Routing Enabled De-
termination

All vari-
ants

XML (isRouter=True) attribute

Yum client config CentOS 6,
CentOS 7

/etc/yum.conf file, and all files/directories under /etc/yum.repos.d. Data
stored in compressed archive under the ‘Yum_Configuration’ tag.

On Ubuntu, if an SSH Private Key file is used and the username is not recognized as root, then some data will not be
retrieved as the sudo command will not be able to be issued without a password.

7.4 Linux OS Role Data Retrieval

The next table gives a summary of the roles and role data retrieved from each Linux host. The second column gives
the XML attribute in the NetObject for this host that identifies this role. The third column gives the directory name that
contains the retrieved role data when the compressed role data is expanded to disk (this value is N/A if the role data
is stored directly in the XML). The fourth column describes the role data. If it is a filename, then this is the filename
that contains the data when the compressed archive for the role data is expanded to disk. See the XML description for
rloginDataObjects for how the compressed archive data is expanded to disk.

Windows OSes that have been tested for role data retrieval are CentOS 6 and CentOS 7 (except for Quagga router,
which has only been tested under CentOS 6).

7.4. Linux OS Role Data Retrieval 59



Netmapper User Guide, Release 2.1.1722

Role XML Attribute Rolename
tag in com-
pressed
archive

Config Data

DNS Server isDnsServer Dns_Server Forward and reverse DNS configuration files are retrieved
and stored (forward.config, reverse.config)

DHCP Server isDhcpServer Dhcp_Server File named dhcpd.conf
Web Server isWebServer Web_Server File named httpd.conf
Yum Server isYumServer Yum_Server File named yum.config and any repo files found in

/etc/yum.repos.d
Samba Server isSambaServer Samba_Server File named smb.conf
Quagga Router isQuaggaRouter Quagga_Router Various files under /etc/quagga, such as

/etc/quagga/ripd.conf - these files are only retrieved
if there is an active daemon for the protocol on the node.

Tomcat Server isTomcatServer Tomcat_Server See description for Windows OS.
Snort Server isSnortServer Snort_Server See description for Windows OS.
FTP Server isFtpServer Ftp_Server Only implemented for vsftp, retrieves config file

/etc/vsftpd/vsftpd.conf
Vyos Router isVyosRouter Vyos_Router Config files for Vyos

7.5 Hypervisor Role Data Retrieval

The next table summarizes the role data collected for Hypervisors. VMware Hypervisor information is collected using
vSphere API query.

Role XML Attribute Rolename tag in com-
pressed archive

Config Data

VMware Hyper-
visor

isVmwareHypervisor Vmware_Hypervisor All VirtualMachine, HostSystem
managed objects pretty printed to
a file named vmware.config. Some
information is parsed from the
VirtualMachine managed objects
and is used to create a NetObject
XML object for each virtual ma-
chine. VirtualApp managed objects
are also retrieved and stored in
vmwareVapp XML objects (Vapps
are only available from a Vcenter
server)

ESXI Server isEsxiServer Esxi_Server The output of the esxcfg-info com-
mand executed on the ESXI server
is stored in a file named esxi.config

Vcenter Server isVcenterServer N/A No Vcenter specific configuration
retrieved.

Hyper-V Hyper-
visor* **

isHypervHypervisor HyperV_Hypervisor Information on virtual machines
hosted are placed in vmdata.config
file. (Vm data retrieved by re-
mote Powershell execution of get-
vm command). Configuration data
for the host machine stored in host-
system.config

60 Chapter 7. Remote Login and Node Identification



Netmapper User Guide, Release 2.1.1722

• * - Query will not succeed unless the IP address of this host can be resolved with NSlookup.

• ** - Data retrieval method relies on remote Powershell command execution.

7.6 Cisco Network Appliance Data Retrieval

For Cisco network appliances, the netobject is given a top level XML attribute of isCiscoAppliance in the XML. Most
of the data retrieved from the Cisco device is parsed into the various XML sections of a netobject. However, some
data is not parsed as is saved in compressed archive files. When this data is expanded, it is expanded under a role
directory named Cisco_Appliance (the DHCP server configuration files are stored in the standard DHCP role directory
of Dhcp_Server).

Data OS Command Filename
Running config IOS show running-config running-config.txt
Running config (all VDCs) NX-OS show running-config vdc-all

(only present in the net object
corresponding to the default
VDC)

running-config-all-txt

Running config (one VDC) NX-OS show running-config (exe-
cuted within a VDC)

running-config.txt

Spanning Tree IOS/NX-OS show spanning-tree spanning_tree.txt
Access Lists IOS/NX-OS show access-lists access_lists.txt
IPv4 interface options* IOS show ip interface ipv4_interface_options.txt
IPv4 interface options* NX-OS show ip interface vrf all ipv4_interface_options.txt
IPv6 interface options* IOS show ipv6 interface ipv6_interface_options.txt
IPv6 interface options* NX-OS show ipv6 interface vrf all ipv6_interface_options.txt
Firewall config IOS show policy-firewall config firewall_config.txt
IP inspection IOS show ip inspect all ip_inspect_config_VRF_default.txt
IP inspection IOS show ip inspect all vrf vrf-

name
ip_inspect_config_VRF_vrfname.txt

DHCP Server config** IOS show ip dhcp pool ip_dhcp_pool.txt
DHCP Server config** IOS show ipv6 dhcp pool ipv6_dhcp_pool.txt

• * - Some information is parsed, but the entire output of this command is also saved in an archive file.

• ** - Stored in role directory Dhcp_Server, netobject has isDhcpServer XML tag.

7.6. Cisco Network Appliance Data Retrieval 61



Netmapper User Guide, Release 2.1.1722

62 Chapter 7. Remote Login and Node Identification



CHAPTER

EIGHT

ADDING NEW QUERY/PARSE ENGINES

Netmapper has the capablity to import user code to extend the stream query and parsing of returned data for a network
device. This can be used to extend Netmapper query/parse to OSes that are not currently supported. This capability is
supported only for stream query (i.e., SSH query).

8.1 Query/Parse Overview

Each supported OS for remote login data retrieval has associated query and parse classes (referred to as query and
parse engines). The query engine executes commands that retrieve data. This data is stored in a temporary file, which
is handed to the parse engine after all queries have been completed. Each query/parse engine has a static method called
getId() that returns a string. Query/Parse engines that are to be matched return the same getId() string. The getId()
string is written to the data output file produced by a query engine, and this getId() string is used to choose the parse
engine for that file.

The currently supported query/parse engines in Netmapper have the following getId() strings: base, linuxbase, centos6,
centos7, ubuntu, vyos, kali, cisco_ios, cisco_ios-xe, cisco_ios-xr, cisco_nxos, cisco_asa, windows, vmware, esxi,
vcenter. The base query/parse engines are the base query/parse classes for all query/parse engines. The linuxbase
query/parse engines are the base query/parse classes for all Linux query/parse engines. In this document, query/parse
classes are referred to by their getId() string, and not by their python class name.

8.2 Dynamic Import

New query/parse classes can be dynamically imported at Netmapper startup. This code is imported from <in-
stallDir>/plugins/queryparse. Each directory under this path is assumed to be a new query/parse engine. Each
query/parse engine directory must contain a file named implementation.py. This file must contain a function named
getQueryParseClasses(queryClassList, parseClassList) that is called at import time, and this function should return
query_class_object, parse_class_object. This function is passed a list of known query classes and parse classes so
the function can determine which query/parse class to inherit from (query/parse classes should be chosen based on
their returned getId() string). At a minimum, a new query class and parse class must inherit from the base query/parse
classes, which provide some common methods required for query/parse.

Two example dynamic query/parse engines are provided in the Netmapper installation, one for ESXI query/parse and
one for Vcenter application query/parse (this one does not do much). The example ESXI query/parse classes inherits
from linuxbase query/parse classes as they provide some default query/parse capability for Linux OSes. The example
Vcenter application query/parse classes inherit from the base query/parse classes.

63



Netmapper User Guide, Release 2.1.1722

8.3 Query action (default query):

The default query is the first query done of a network object. Based on parsed results, a second query may be done
(decided by the parse engine) to retrieve information specfic to roles hosted by the network object.

A base query object is created for each network node that is to be queried via SSH. This base query object is passed a
list of known query classes (this includes classes that are dynamically imported).

The first action taken by the base query object is to open an SSH connection to the network object in order to verify
that the credentials for the network object works (no command is executed). If the connection is successfully opened,
the connection is closed, and then the list of known query classes is used to classify the network object.

Each query class must provide a method named getClassifyCmdOutput which must open a connection, execute a
classification command (i.e, uname), close the connection, and then return the command and its accompanying output.
After the getClassifyCmdOutput method is excuted, an inner loop through all query classes passes the classification
command and its output to each query class via a method named classify. The classify method checks if the command
is supported, and if it is, parses the output to determine if the device matches what is expected. If the classify method
returns True, then a query class match has been determined. An object of this class is created, then the doQuery method
is called to accomplish the default query. The query class list is processed in an undetermined order, so a network
object may have several connections made to it during the classification process. It is assumed that a classification
command for a particular OS, when executed on a foreign OS, has no side effects on the foreign OS if it is not
supported.

8.4 Query action (role query):

Role query is optional, and is decided by the parse engine after the default query data is parsed. If role query is
needed, the base query object is called again with a list of roles and the query class to be used (the query class is
known because the default query classified the network object). The method doRoleQueryInit is called first, which
must open the connection and do any other needed initialization. Then the method doRoleQuery(role) is called for
each role that must be queried.

8.5 Other Comments:

The type of connection to open to an object is decided by the query engine. By default, the base class provides a method
that will open a paramiko connection and that uses the paramiko exec_command method to execute query commands.
However, a query engine may need to use a different query method, such as the paramiko invoke_shell method (the
base class also supports this query method through Netmiko). The base query class has no specific knowledge about
the OSes that it is to query. It simply calls the classification method for each query class until one succeeds. If no
classification method is successful, then a message is printed that the connection was opened, but the device could not
be classified so no query was performed.

64 Chapter 8. Adding new Query/Parse engines



CHAPTER

NINE

XML OUTPUT SCHEMA

This section gives highlights of the XML output schema (a more detailed description is in the appendix). The top-level
XML contains three lists of primary objects:

• netobjects – this contains the information for the discovered/scanned network devices

• vmwareVapps – contains VMware Vapp information retrieved from a Vcenter server

• rloginDataObjects – contains configuration information in the form of base-64 encoding zip archives of retrieved
files from a host. The retrieved files can be for default information that does not fit well into an XML format or
for role-specific configuration information.

The XML schema for netobjects and vmwareVapps is readable and self-explanatory. While most XML objects are
consistent across the different OS types, some have OS-dependent tags/attributes, most notably the firewall rules XML
schema.

9.1 rloginDataObjects

The rloginDataObjects schema requires special mention since it is very different from the other object schema:

<rloginDataObjects>
<!---Rlogin data archives -->

</ rloginDataObjects>

The rloginDataObjects section is used to store retrieved files from the host in a base-64 encoded ZIP archive format.

Each rloginDataObject under the rloginDataObjects section has the form:

<rloginDataObject hostname=hostnameUniquified timestamp=tsString id=uuidForNetObject>
<archive rolename=rolename>
<archiveDataLines>
<archiveDataLine value=base64string/>
...many archiveDataLines...
</archiveDataLines>
<archiveFiles>
<archiveFile name=localFilename orgpath=originalPathOnHost/>
</archiveFiles>

</archive>
</rloginDataObject>

The attributes for the rloginDataObject are:

• hostname=*hostnameUniquified – The host name that this data was retrieved from; uniquified by adding part
of the *netobject’s uuid to the end of the hostname.

65



Netmapper User Guide, Release 2.1.1722

• timestamp=tsString – A timestamp string indicating when this data was retrieved from the remote host.

• id=uuidForNetObject – The uuid of the NetObject that owns this data.

Each rloginDataObject can have multiple archive objects, each archive object contains the file(s) associated with some
role data or default data retrieved from that hose. Each archive object is a base-64 encoded ZIP archive containing one
or more files for the role or default data.

The rolename attribute of the archive object is the identifying role tag or default data tag for this data. Under an archive
object are multiple archiveDataLine objects, each containing a value attribute that is the base64 encoded line for this
entry. Reconstructing the ZIP archive for this data requires all value attributes of archiveDataLine objects to be written
to a file in the same order as found in the archive object, and then decoding this base64 file back to its binary form –
this will be the original ZIP archive.

Following the archive object is an archiveFiles object containing one or more archiveFile objects that gives the files in
the archive.

The attributes for the archiveFile object are:

• name=localFilename - The name of the file in the archive.

• orgpath=originalPathOnHost – The name of the file on the remote host.

Example:

<rloginDataObject hostname="centos6ns.test2.net-b0d50d61" timestamp="2015-12-16_16-45-
→˓21" id="b0d50d61-a372-11e5-b708-00505691a02e">
<archive rolename="DHCP_Server">
<archiveDataLines>
<archiveDataLine value=

→˓"UEsDBBQAAAAAALqFkEfMyeEdygwAAMoMAAALAAAAZGhjcC5jb25maWcjDQojIFNhbXBsZSBjb25m"/>
...other lines not included...

</archiveDataLines>
<archiveFiles>
<archiveFile orgpath="/etc/dhcp/dhcpd.conf" name="dhcp.config"/>

</archiveFiles>
</archive>

</rloginDataObject>

When an XML file with rloginDataObject is read into memory, the compressed archives are kept as is. To examine
the data in uncompressed form, the File > Expand Rlogin Data menu choice is used.

This expands the data to the current working directory in the following directory structure:

RloginNodeConfigData\tsString\hostnameUniquified1\rolename1\filename1
| | \filename2
| | \filenameN
| \rolename2\filename1
| | \filename2
| | \filenameN
| \rolenameN\filename1
| | \filename2
| | \filenameN
\hostnameUniquified2\rolename1\filename1

| \filename2
| \filenameN
\rolename2\filename1
| \filename2
| \filenameN
\rolenameN\filename1

66 Chapter 9. XML Output Schema



Netmapper User Guide, Release 2.1.1722

\filename2
\filenameN

etc. The above example shows only files retrieved for each role, but the retrieved data can have directory structure as
well.

9.1. rloginDataObjects 67



Netmapper User Guide, Release 2.1.1722

68 Chapter 9. XML Output Schema



CHAPTER

TEN

AUTOMATED REGRESSION TESTING OF VMWARE VIRTUAL
NETWORKS

Netmapper has a command line scripting interface that is currently used by the developers for regression testing of
VMware virtual networks. The regression testing feature has been integrated into Netmapper for user benefit and is
documented here. The regression testing feature allows Netmapper to be run from the command line using a script
that scans a user-specified Vmware Virtual Application, perform a network difference against a user-provided golden
file, and report the results.

The cli_examples/regression directory in the Netmapper installation directory contains the following files:

• generic_host_regress.netmap – a Netmapper script that is used on the remote machine to run a regression test.

• run_regression_test.netmap – a Netmapper script that is used on the local machine to kick off the remote regres-
sion tests.

• regessionTestDataExample.xml – an example data file that specifies the information needed for a regression test.

A regression test has the following steps:

• The Vcenter host is contacted, and the remote Vapp located. The Vapp is started if necessary.

• The target machine in the Vapp that will run Netmapper is identified.

• A user-specified temporary directory on the target VM is created (if it already exists, it is deleted, then recreated
so that it will be empty).

• The Netmapper installer executable is copied to the target VM and executed. This step is optional if a path to the
Netmapper installer executable is not provided (in this case, it is assumed that Netmapper is already installed on
the target VM). The installation directory for Netmapper on the remote machine is the default directory. UAC
must be turned off on the target VM that is to run the Netmapper installer so it does not query the user for
permission.

• Data files necessary for the regression test are copied over to the remote directory.

• Netmapper is run in command line mode with a script that performs a scan of user-specified networks/hosts.
The resulting network data is saved, and a network difference is performed against a provided golden network
file.

• Result files (Netmapper log, the output network file, golden file, and network difference exceptions file) are
copied back to the local machine and placed in a results directory.

• The network difference file is parsed and a result file named PASS.txt (no differences) or FAIL.txt (differences
exist) is created.

• The Vapp is shutdown (this is optional, specified by user).

Multiple regression tests (multiple virtual networks) can be specified in the regression data XML file; these tests are
run sequentially.

69



Netmapper User Guide, Release 2.1.1722

10.1 Regression Test Data File

The regression test data XML file has the following format:

<regressionTestData>
<crypto attributes for encryption, optional section/>
<regressionTests common attributes for all tests under this section, this section
→˓can repeat />
<regressionTest attributes for one regression test, this section can repeat />

</regressionTests>
</regressionTestData>

The regressionTests section contains one or more regressionTest sections; the regressionTests attributes are applied
to all of the child regressionTest sections. The attributes on a regressionTest section specifies information for one
regression test. There can be multiple regressTest sections within a regressionTests section, and there can be multiple
regressionTests sections within a regress test data XML file. The following two tables give these attributes.

10.1.1 regressionTests XML Attributes

Attribute Name Description
localWorkingDirectory Netmapper will change to this directory before accessing any local files. Any rela-

tive local file pathnames are relative to this directory.
localNetmapperInstallerExe (Optional attribute) This is the path to the Netmapper installer executable on the

local machine. If specified, then this is copied to the remote machine and executed
before performing the regression test.

localResultDirectory The local directory that will hold regression test results. This directory will be
created if it does not already exist, and individual tests are created as subdirectories
within this directory.

localRegressionScript The path on the local machine to the Netmapper script run on the remote ma-
chine that performs the scan and network difference. See the example script named
generic_host_regress.netmap.

remoteWorkingDirectory The working directory on the remote machine for any remote command execution
that copies files or creates directories.

remoteNetmapperExe The path on the remote machine to the Netmapper executable. This must be an
absolute path to the Netmapper executable, the remote working directory will be
set to the directory containing this executable.

remoteTempDirectory The directory on the remote machine for holding files copied from the local host
and for holding results. This directory will be recursively deleted if it exists, and
then recreated. It is not deleted at the end of the test.

remoteWinCmdExePath The full path to the Windows cmd.exe executable, typically
“c:\Windows\System32\cmd.exe”

70 Chapter 10. Automated Regression Testing of VMware Virtual Networks



Netmapper User Guide, Release 2.1.1722

10.1.2 regressionTest XML Attributes

Attribute Name Description
name Name of this regression test, must be unique within regressionTests - this name is also

used as part of the result directory name.
vapp Name of the VMware vApp.
doc Doc string for this test.
host Name of the VM host that will run Netmapper.
user User for host. This is clear text, the userEncrypted attribute can be used in place of this

(see section on encrypted attributes).
password Password for user. This is clear text, the passwordEncrypted attribute can be used in

place of this.
targetsFileInput The path to a local file that contains the target IPs, hostname, networks to be scanned by

Netmapper.
credentialFileInput The path to a local file that specifies the credentials used for remote login. This is an

optional attribute.
credentialFilePassword The passphrase for the credentials file. This is clear text; the credentialFilePasswordEn-

crypted attribute can be used in place of this. This is an optional attribute; it is only
needed if a credentialFileInput parameter is specified.

goldenFileInput The path to a local file that is the golden network XML to compare against.
exceptionFileInput The path to a local file that is the exception file to be used in the network diff comparison.

This is an optional attribute.
resultFileOutput The name of the output network file for the scan. This path should not have a directory

component.
diffFileOutput The name of the output diffs file to be used for the network difference. This path should

not have a directory component.
logFileOutput The name for the Netmapper log file. This path should not have a directory component.

10.2 Running a Regression Test

An example regression data file is given below (this is the regessionTestDataExample.xml file found in the directory).
This file runs one regression test named wsus2008 on a VMware Vapp that is also named wsus2008:

<regressionTestData>
<!-- Crypto section is optional, only needed if use encrypted attributes -->
<crypto salt="ce:fc:8a:e0:a2:a6:7b:44:ff:4a:fa:a6:4e:47:c3:20" digest=
→˓"d3:90:b1:5a:e0:0d:f2:dc:1d:6f:9f:fb:12:8d:96:8b:22:7b:1f:5a:68:2a:ab:c6:fd:3e:0d:1f:65:9a:08:68
→˓" />
<regressionTests remoteWorkingDirectory="C:\"
remoteNetmapperExe="c:\DasiNetmapper\netmapper.exe"
remoteTempDirectory="c:\NetmapperRegressData"
remoteWinCmdExePath="c:\Windows\System32\cmd.exe"
localWorkingDirectory=" c:\DasiNetmapper\"
localNetmapperInstallerExe=".\installer\netmapper.exe"
localResultDirectory="c:\regression_results"
localRegressionScript="cli_examples\regression\generic_host_regress.netmap">
<!-- Encrypted atttributes supported: userEncrypted, passwordEncrypted,

→˓credentialFilePasswordEncrypted -->
<!-- Cleartext versions supported: user, password, credentialFilePassword -->
<regressionTest
name="wsus2008"
vapp="wsus2008"

10.2. Running a Regression Test 71



Netmapper User Guide, Release 2.1.1722

doc="Test on wsus2008 network"
host="win7cln4"
user="test1.net\administrator"
passwordEncrypted="bc:82:5b:4b:6c:8d:97:a1:b5:54:1f:0a:0d:3e:b1:f5"
targetsFileInput="scripts\wsus2008_esxi_hostlist.txt"
credentialFileInput="scripts\wsus2008_esxi_credentials.xml"
credentialFilePasswordEncrypted="8a:89:9c:b8:48:73:8b:10:d9:38:ce:c0:64:88:bd:ce"
goldenFileInput="scans\wsus2008_esxi_network_golden.xml"
exceptionFileInput="scripts\wsus2008_diff_exceptions.xml"
resultFileOutput="wsus2008_esxi_network.xml"
diffFileOutput="wsus2008_esxi_network_diffs.xml"
logFileOutput="wsus2008_esxi.log"
/>

</regressionTests>
</regressionTestData>

The script cli_examples/regression/run_regression_test.netmap is used on the local machine to run the test. This script
requires the following parameters:

• DF:<regression data file>

• PP:<passphrase for encrypted attributes in the regression data file>

• HOST:<vcenter host to has the Vapps>

• USER:<vcenter username>

• PW:<vcenter user password>

• TEST: <all|<test name>>

• STOP: <false/no | true/yes> – use true or yes to stop the Vapp after the run

• SKIPINSTALL: <false/no | true/yes> – use true or yes to skip netmapper installation step (useful if running
multiple tests on same VM)

Assuming that Powershell window is open, and the current working directory is C:\DasiNetmapper, then the following
command executes this script:

.\netmapper.exe -c cli_examples/regression/run_regression_test.netmap DF:cli_examples/
→˓regression regressionTestDataExample.xml PP:msu#1bulldogs HOST:<a vcenter host>
→˓USER:<a Vcenter username> PW:<vcenter password> TEST:<all | a particular vapp, i.e,
→˓wsus2008> STOP:no SKIPINSTALL:no

Parameters are passed to a Netmapper script in the form of PARM_NAME:PARM_VALUE.

The cli_examples/regression/run_regression_test.netmap script contains the following lines:

##parameters
# DF:<regression data file>
# PP:<passphrase>
# HOST:<vcenter host>
# USER:<vcenter username>
# PW:<center user password>
# TEST: <all|<test name>>
# STOP: <false/no | true/yes>
# SKIPINSTALL: <false/no | true/yes>

run-vmware-regression DF PP HOST USER PW TEST STOP SKIPINSTALL

72 Chapter 10. Automated Regression Testing of VMware Virtual Networks



Netmapper User Guide, Release 2.1.1722

It has a single command, run-vmware-regression, that accepts the DF, PP, HOST, USER, PW, TEST, STOP, SKIPIN-
STALL parameters.

Once the regression test is finished, the results are placed in the localResultDirectory (C:\regression_results), in a
subdirectory named wsus2008 appended to a timestamp. In this directory will either be a file named PASSED.txt
(empty), or FAILED.txt (contains the network differences produced by the Netmapper network difference after the
scan). This directory also includes a downloads subdirectory that contains:

• the log file of the Netmapper run on the remote Vapp

• the network XML produced by the Netmapper run and golden XML file that this was compared against

• a file containing the network differences

10.3 Encrypted Attributes

Some attributes in a regressionTest section can be encrypted (i.e., use passwordEncrypted instead of password). The
Utility tab, Crypto controls support generation of these encrypted attributes.

Fig. 10.1: Screenshot of the Crypto controls on the Utility tab.

10.3.1 Creating a new regression data XML file

If a new regression data XML file is being created that requires encrypted attributes, follow these steps:

• Click on the Generate Salt button (generates random salt value).

• Type in a passphrase in the Passphrase line edit.

• Click on the Generate Digest button (generates digest from the salt and passphrase).

After this, copy the generated salt and digest hex strings and put them into the new regression data XML file as shown
below.

10.3. Encrypted Attributes 73



Netmapper User Guide, Release 2.1.1722

Fig. 10.2: Entering the generated salt and digest hex strings into the new regression data XML.

Fig. 10.3: The XML is now updated with the new salt and digest hex strings.

The salt is a randomly generated value that is mixed with the provided passphrase to produce the digest that is stored
in the XML. When encryption is required, the salt is mixed with the passphrase in a different manner to create a digest
used for encryption. The digest in the XML file is only used for validating the passphrase, which is done when the file
is loaded. Validation creates a new digest using the salt value in the XML file along with a provided passphrase. If the
new digest matches the digest in the XML file, then the passphrase is validated.

Once a salt and digest has been created, the Encrypt button will be active. Arbitrary text can be placed in the Text to
encrypt line edit control, which is then encrypted by the Encrypt button. The hex string representing the encrypted
text is generated in the Encryption Results line edit. This hex string is then used as the value of the encrypted attribute
(copy this hex string into your XML file).

Fig. 10.4: Encrypting an attribute.

74 Chapter 10. Automated Regression Testing of VMware Virtual Networks



Netmapper User Guide, Release 2.1.1722

10.3.2 Editing a previously created regression data XML file

To add more encrypted attributes to a previously created regression data XML file, perform the following steps:

• Start Netmapper, and navigate to the Utility tab.

• Open the regression data XML file in a text editor.

• Copy the salt, digest values in the XML file to their appropriate fields in the Crypto controls.

• Enter the passphrase originally used for this XML file into the Passphrase line edit control.

• Click on the Generate Digest/Validate Passphrase button. A new digest is created from this passphrase and the
salt, and then checked against the entered digest. If the two digests match, then the passphrase is validated, and
the Encrypt controls are enabled.

• Use the Encrypt controls to generate new encrypted attributes for the regression data XML file.

10.3. Encrypted Attributes 75



Netmapper User Guide, Release 2.1.1722

76 Chapter 10. Automated Regression Testing of VMware Virtual Networks



CHAPTER

ELEVEN

APPENDIX

11.1 Initialization File Key Words and File Format

The default initialization file read by Netmapper on startup resides in ~/.netmapper/config.txt. Configuration options
are formatted as keyword|option (the | symbol is the separator). A # symbol marks a comment line.

The first part of the file contains static configuration options that are editable by the user. The table below shows the
currently supported static configuration options.

Keyword|Default Description
disableAllDataRetrieval|hostname Disables all data retrieval for host (default and role data)
disableRoleDataRetrieval|hostname|rolename Disables Role Data Retrieval for host, rolename
disableRoleDataStorage|hostname|rolename Disables Role Data Storage for host, rolename

The second part of the file contains configuration options set by the GUI. These options are updated when the GUI
exits, so any user edits to these options are lost. All of these options start with DYNAMIC_.

11.1.1 Controlling role data retrieval/storage

The disableAllDataRetrieval, disableRoleDataRetrieval, disableRoleDataStorage, options are intended to give the
user full control over role data retrieval and storage. This may be needed if the role data that is retrieved is large, and
the user only wishes to disable retrieving or storing the data.

Using disableRoleDataRetrieval can speed execution time by skipping role data retrieval. Using disableAllDataRe-
trieval will skip all data retrieval for a host – this is useful if using a network login credential and it is desired to skip
one or more particular hosts.

When role data storage is disabled, role data is still retrieved but is not stored in the XML file as a compressed
archived. As an example, a VmWare EXSI server can return a large configuration file, parts of which are parsed to
populate specific fields in the XML, and the entire file is saved as a compressed archive in the XML. The user may
want disable storage of the compressed data, but still enable retrieval of the data for the parts that are parsed into XML.

The Host field can be ‘*’, which disables for all hosts. The rolename field can be ‘*’, which disables for all roles. The
Host field can be an IP address or hostname.

Examples

The following disables data retrieval from all hosts that respond to VMware API calls (ESXI or Vcenter):

disableRoleDataRetrieval|*|Vmware_Hypervisor

77



Netmapper User Guide, Release 2.1.1722

The following disables data storage from all hosts that respond to VMware API calls - VMs will be populated in XML,
but config data not saved in XML:

disableRoleDataRetrieval|*|Vmware_Hypervisor

The following disables data retrieval for WSUS roles from one host:

disableRoleDataRetrieval|myWsusHost|Wsus_Server

Valid role names are:

• Esxi_Server - (doc: ESXI Server)

• Vmware_Hypervisor - (doc: Responds to VMWare API Calls)

• Yum_Server - (doc: Yum Server)

• Wsus_Server - (doc: Wsus Server)

• Nfs_Server - (doc: NFS Server)

• Web_Server - (doc: Web Server)

• Domain_Controller - (doc: Domain Controller)

• Dns_Server - (doc: DNS Server)

• Dhcp_Server - (doc: DHCP Server)

• Samba_Server - (doc: Samba Server)

• Vmware_Hypervisor - (doc: VCenter Server)

• Exchange_Server - (doc: Exchange Server)

• HyperV_Hypervisor - (doc: HyperV Server, responds to HyperV API Calls)

11.2 Detailed XML Output Schema

The XML output format for network information has been iterated on by MSU and Circadence.

This is the current output format of the DASI Netmapper Tool as of January 2016:

<Netmapper>
<netobjects>
<netobject various attributes id=unique_id >

<!-- netobject content -->
</netobject>

</netobjects>
<vmwareVapps>
<!--Vmware Vapp contents -->

</vmwareVapps>
<rloginDataObjects>
<!--Rlogin data archives -->

</ rloginDataObjects>
</Netmapper>

The top-level XML contains three lists of primary objects:

• netobjects - this contains the information for the discovered/scanned network devices

• vmwareVapps - contains VMware Vapp information retrieved from a Vcenter server

78 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

• rloginDataObjects – contains configuration information in the form of base-64 encoding zip archives of retrieved
files from a host. The retrieved files can be for default information that does not fit well into an XML format or
for role-specific configuration information.

11.2.1 netobject

Each netobject is a discovered network object by an NMAP scan and has the following general format (ordering of the
fields/attributes should not be assumed):

<netobject various attributes id=objectId >
<lastscanaddress network=networkspec iptype=iptype ipaddr=ipaddr />
<interfaces>
<interface macaddress=macaddress_spec macvendor=vendorIdentifierString
<!-- interface content -- >
</interface>

</interfaces>
<routingConfigs>
<!-- routingConfig objects -->

</routingConfigs>
<iproutes>
<!-- iproute objects -- >

</iproutes>
<osguess various attributes >
<transient>
<addresstable>
<!--addrtblentry objects -- >

</addresstable>
<bridgetable macaddress=macaddress>
<!--bridgetblentry objects -- >

</bridgetable >
</transient>
<domainControllerRoles variousAttributesForSubroles>
<exchangeServerRoles variousAttributesForSubroles>
<os name="" version="" manufacturer="">
<patches>
<!--patch objects -- >
<patch id="1" name="value"/>

</patches>
</os>
<physicalserver>
<memory ram=size vmem=size>
<cpus>
<!--cpu objects -- >
<cpu name="">

</cpus>
<disks>
<!--disk objects -- >
<disk name=name size=size DriveType=drivetype ProviderName=remotepath >

</disks>
</physicalserver>
<applications>
<!--application objects -- >
<application name=name vendor=vendor version=version >

</applications>
<services>
<!--service objects -- >
<service name="" status="stopped|running" startmode="auto|manual">

11.2. Detailed XML Output Schema 79



Netmapper User Guide, Release 2.1.1722

</services>
<hostname fqdn=fqdn_name name=hostname/>
<firewall>
<profiles>
<!--profile objects for Windows OS>
</profiles>
<rules>
<!--rule objects - Tags are OS-specific other than name>
</rules>

<firewall/>
<windnsrecords>
<!--arecord objects for Windows DNS server>

</windnsrecords >
<fileshares>
<!--fileshare objects for shared disks>

</fileshares>
</netobject>

The attributes attached to a netobject are as follows. Only the id attribute is guaranteed to be present.

• id=objectId - an internally generated UUID string uniquely identifying this object. This string can be used a
reference pointer by other netobjects. For virtual machines retrieved from VMware API calls, this UUID is the
UUID generated by VMware.

Network device attributes (if present, will have a value of True):

• isRouter=”True” - indicates the device is forwarding packets.

• isBridge=”True” - indicates the device returned SNMP information that it is performing bridge operations (i.e,
it is a switch).

• isPrinter=”True” - indicates the device performs print functions

Role specific attributes (if present, will have a value of True):

• isDnsServer=”True” - this device is a DNS server

• isDomainController=”True” - this device is a Windows Domain Controller

• isExchangeServer =”True” – this device is a Windows Exchange Server

• isDhcpServer =”True” – this device is a DHCP Server

• isWebServer =”True” – this device is a Web Server

• isWsusServer =”True” – this device is a WSUS Server

• isNfsServer =”True” – this device is a NFS Server

• isSambaServer =”True” – this device is a Samba Server

• isYumServer =”True” – this device is a Samba Server

• isVmwareHypervisor =”True” – this device responds to VMware API calls

• isEsxiServer =”True” – this device is a VMware ESXI server

• isVcenterServer =”True” – this device is a VMware Vcenter server

• isHypervHypervisor =”True” – this device is a Windows Hyper_V Hypervisor (unimplemented, reserved)

Miscellaneous attributes:

• isVirtualMachine =”True” – this device is a virtual machine

• vmName=name – name of this virtual machine as identified by API call (not the hostname)

80 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

• scanType= ”vmwareAPI”| ”network” – identifies how this information was retrieved. ‘vmwareAPI’ means data
was retrieved by VMware API calls, ‘network’ means by some sort of network query (SNMP or Nmap). This is
used when merging nodes produced by two different methods.

• loginSuccess =”True” – indicates remote login attempt to this node was successful.

11.2.2 lastscanaddress

<lastscanaddress network=networkspec iptype=iptype ipaddr=ipaddr />

Example:

<lastscanaddress network="192.168.27.0/24" iptype="ipv4" resolvedname="win7ser08base"
→˓ipaddress="192.168.27.130"/>

The lastscanaddress is the last IP address that the netobject responded to during a network scan. The network attribute
is present if Netmapper has discovered what network this netobject belongs to and is formatted in CIDR notation.
The iptype attribute is either ipv4 or ipv6. The ipaddress attribute is the IP address discovered by the scan. The
resolvedname is the resolved name of the IP address.

11.2.3 customTags

<customTags user-defined attributes >

This section is populated by user-defined attributes created by dynamically imported/executed user code. See the
section on Custom Tagging for more details.

11.2.4 interface

The interfaces contains a list of interface objects for this netobject. A netobject will have at least one interface object,
with a value of ‘0:0:0:0:0:0’ if the actual MAC address could not be discovered. A netobject may have multiple
interface objects.

Each interface object has the following general format:

<interface macaddress=macaddress_spec macvendor=vendorIdentifierString isVnic=True
→˓vnet=name vffName=name linkLocalAddress=ip6LLaddress>
<ipaddresses >
<!-- list of ipaddress objects, may not be present -- >

</ipaddresses>
<ports iptype=iptype ipaddr=addr >
<!-- list of port objects, may not be present -- >

</ports>
<phyports>
<!-- list of phyport objects, may not be present -- >

</phyports>
<routingProtocols>
<!-- list of routingProtocol objects, may not be present -- >

</routingProtocols>
<dnsservers>
<dnsserver iptype=iptype ipaddr=addr resolvedname=name dnstype=primary|secondary>

</dnsserver>
<l3connections>
<l3connection various attributes />

11.2. Detailed XML Output Schema 81



Netmapper User Guide, Release 2.1.1722

</l3connections>
<l2connections>
<!-- list of l2connection objects, may not be present -- >

</l2connections>
</interface>

Attributes for the interface object are:

• macaddress=macaddress – mac address of as ascii hex bytes separated by ‘:’

• macvendor=vendorName – vendor assigned to this mac address

• isVnic=’True’ – if present, value is True and indicates that this is a virtual NIC

• vnet=vnetName – if present, indicates this interface is connected to a virtual net with name vnetName.

• vrfName=name - if present, indicates this interface is associated with a VRF instance.

• linkLocalAddress=ip6LLaddress - if present, is the IPv6 link local address assigned to this interface

An interface object can contain one or more ipaddress, routingProtocols, phyport, port, dnsserver, l3connection, and
l2connection objects. It can also contain a dhcpserver object.

11.2.5 ipaddress

An ipaddress object has the following format:

<ipaddress network=networkspec iptype=iptype ipaddr=ipaddr ifindex=integer
→˓dhcpServer=ipaddr/>

Example:

<ipaddress network="192.168.27.0/24" iptype="ipv4" resolvedname="win7ser08base"
→˓ipaddress="192.168.27.130" ifindex="16" />

An interface may have multiple ipaddress objects or it may have none. An ipaddress object is present only if has been
verified to map to this mac address, either via SNMP query or by extraction from a local network scan. The ifindex
field ties this address to a physical port, and it is only present if this information has been discovered. If there are no
ipaddress objects, the lastscanaddress is used as the address for this netobject. The dhcpServer field is present if this
address was assigned by a DHCP server and is the ip address of the server.

11.2.6 port

<port protocol=protocol reason=reason portnum=portnum state=state name=name/>

Example:

<ports iptype="ipv4" ipaddress="192.168.27.133">
<port protocol="udp" reason="no-response" portnum="7" state="open|filtered" name=
→˓"echo"/>
<port protocol="tcp" reason="syn-ack" portnum="53" state="open" name="domain"/>

</ports>

The ports revealed by the NMAP TCP and UDP scans are specified in the ports section, which contains a list of port
objects. The attributes attached to ports indicate the IP address used for this scan. The port object contains the port
scan information for a port as returned by NMAP. Only ports with state of open or open|filtered are returned (the latter

82 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

state means that NMAP cannot determine if the port is open or if packets intended for the port are being filtered). The
other attributes are documented in the NMAP DTD. Currently, Netmapper only scans for UDP and TCP ports.

11.2.7 phyport

<phyports>
<phyport various attributes>

</phyports>

Example:

<phyports>
<phyport vlanForUntagged="1" vlanIngressFiltering="False" vlans="1" portnum="60"
→˓name="lag 7" vlansXmitUntagged="1,2" ifindex="60" vlanAcceptableFrameTypes="admitall
→˓"/>
<phyport vlanForUntagged="1" vlanIngressFiltering="False" vlans="1" portnum="61"
→˓name="lag 8" vlansXmitUntagged="1,2" ifindex="61" vlanAcceptableFrameTypes="admitall
→˓"/>
</phyports>

The phyport objects are physical ports discovered via SNMP/Remote Login for this netobject. The attributes for a phy-
port are as follows. Not all attributes are guaranteed to be present, it depends on what SNMP tables the switch/router
supports or what is discovered during remote login.

• portnum=portnum – The port number for this port

• name – port name

• ifindex=interface index – The interface index for this port – often the same as the port number but does not have
to be. This ifindex can referenced by other objects ( ipaddress, l3connection, and l2connection objects).

• vlans=vlan list – A list of decimal numbers separated by commas that are the VLANs egressed on this port.

• vlansBlocked=vlan list – A list of decimal numbers separated by commas that are the VLANs forbidden to
egress on this port.

• vlansXmitUntagged=vlan list – A list of decimal numbers separated by commas that are the VLANs to transmit
as untagged on this port.

• vlanForUntagged=vlan list – Vlan Id that is assigned to untagged packets on this port.

• vlanAcceptableFrameTypes=” admitAll”|” admitOnlyVlanTagged” – Vlan policy for this port.

• vlanIngressFiltering=”True”|”False”– if set, will be boolean – ‘False’ means to accept all frames.

11.2.8 routingProtocols

<routingProtocols>
<!-- list of routingProtocol objects, may not be present -- >

</routingProtocols>

Example:

<routingProtocols>
<routingProtocol iptype="ipv6" protocol="eigrp" neighbor="FE80::F816:3EFF:FE00:3"
→˓autonomousSystem="600" name="eigrp_ipv6"/>

11.2. Detailed XML Output Schema 83



Netmapper User Guide, Release 2.1.1722

<routingProtocol iptype="ipv4" protocol="is-is" neighbor="10.0.2.2" name="is-is_ipv4
→˓"/>
</routingProtocols>

This identifies the routing protocol(s) found to be associated with this interface. Each routingProtocol object has
attributes identifying the protocol and its aspects. Common attributes are:

• name – a unique key for this protocol object

• protocol – generic name of the protocol

• neighbor – an ip address for a neighbor of the same protocol

• iptype – type of ip address for the neighbor

The routingConfigs section found in netobject gives more details about the configuration of the particular protocol.

11.2.9 dnsservers

<dnsservers>
<dnsserver iptype=iptype ipaddr=addr resolvedname=name dnstype=primary|secondary>

</dnsserver>

Example:

<dnsservers>
<dnsserver iptype="ipv4" ipaddress="192.168.27.120" dnstype="primary"/>

</dnsservers>

The dnsserver object gives the ip address of the DNS servers for this interface. The dnstype attribute has values of
either ‘primary’ or ‘secondary’.

11.2.10 dhcpserver

<dhcpserver iptype=iptype ipaddr=addr resolvedname=name >

The dhcpserver object gives the dhcp server for this interface object.

11.2.11 l3connection

<l3connection dstnetobject=objectId iptype=iptype srcaddress=srcIpaddress
→˓srcifindex=integer dstaddress=dstIpaddress dstifindex=integer network=networkspec />

Example:

<l3connections>
<l3connection network="192.168.0.0/24" iptype="ipv4" dstifindex="2" dstaddress="192.
→˓168.0.50" srcaddress="192.168.0.104" dstnetobject="906583cf-8e09-11e5-942c-
→˓005056c0000a"/>
</l3connections>

An interface object may have multiple l3connection objects, contained in an l3connections list.

84 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

The l3connection object connects this netobject at the L3 level to another object. If object A connects to object B, only
one of the objects (A or B) will have an l3connection object (this is to reduce the amount of redundancy in the XML
file, and the link is obviously bi-directional).

The dstnetobject attribute represents the destination connected object, specified by the unique string contained in
the id attribute of the netobject. The srcaddress and dstaddress are the source and destination IP addresses of the
connected nodes. The iptype attribute specifies the type of these addresses while the network attribute specifies the
shared network of this connection. The srcifindex and dstifindex are the ifindex fields (interface index) of the source
phyport and destination phyport (one or both of these may be missing depending upon discovered information).

11.2.12 l2connection

<l2connection srcphyport=integer srcphyportname=string srcaddress=srcIpaddress
→˓dstnetobject=objectId dstmacaddress=macaddress_spec dstphyport=integer
→˓dstphyportname=string dstaddress=dstIpaddress dstnetobject=objectId />

Example:

<l2connections>
<l2connection srcphyport="10148 macaddress="e8:4:62:5a:15:af" dstaddress="10.92.3.85
→˓" netobject="b57bcd40-4819-11e5-8051-005056c0000a" dstphyport="10147" srcaddress=
→˓"10.92.3.87"/>
</l2connections>

An interface object may have multiple l2connection objects (if the same mac address is mapped to multiple ports, like
on a switch), specified in the l2connections list.

This information is returned by SNMP/remote login. The srcphyport/dstphyportname and dstphyport/dstphyportname
fields are the port number/port name values from the source and destination physical ports. Either the source port
number or port name is guaranteed to be present. The destination port number and destination port name may be both
absent, or only one may be present. The dstmacaddress is the destination mac address and will always be present.
The L2 connection object is attached to the interface object that is the source mac. The srcaddress and dstaddress
fields are presented for readability purposes and represent IP addresses contained at the source and destination nodes
(these will be the addresses that the nodes were scanned or discovered at). The L2 connection is defined by the
source macaddress/source port number to destination macaddress/destination port number. The dstnetobject attribute
represents the destination connected object, specified by the unique string contained in the id attribute of the netobject.

11.2.13 routingConfigs

<routingConfigs vrfName=name >
<!-- routingConfig objects -->

</routingConfigs>

<routingConfig various attributes >
<neighbors>
<!-- neighbor objects -->

</neighbors>
</routingConfig>

Example:

<routingConfigs>
<routingConfig proto="ospf" routerId="192.168.0.5" area="10" name="ospf_10_ipv4">
<neighbors>
<neighbor iptype="ipv4" routerId="192.168.0.6" ifname="GigabitEthernet0/2"

→˓ipaddress="10.0.3.1" area="10"/>

11.2. Detailed XML Output Schema 85



Netmapper User Guide, Release 2.1.1722

</neighbors>
</routingConfig>
<routingConfig proto="ospf" routerId="192.168.0.5" area="10" name="ospf_10_ipv6">
<neighbors>
<neighbor iptype="ipv6" routerId="192.168.0.6" ifname="GigabitEthernet0/2"

→˓ipaddress="FE80::F816:3EFF:FE1F:4838" area="10"/>
</neighbors>

</routingConfig>
<routingConfig proto="bgp" routerId="192.168.0.5" autonomousSystem="1" name="bgp">
<neighbors>
<neighbor iptype="ipv4" routerId="192.168.0.3" ipaddress="10.0.2.2"

→˓autonomousSystem="2"/>
</neighbors>

</routingConfig>
</routingConfigs>

The routingConfigs section contains multiple routingConfig objects. There can be more than one routingConfigs
section in a netobject; they are distinguished by a vrfName attribute (VRF instance name). If no vrfName attribute is
present, then this is the routing config for the default or global instance.

Each routingConfig option contains multiple attributes for this configuration. It may also contain a neighbors section
that lists neighbors or peers of the same protocol for this netobject.

Routing configuration information is discovered during direct login of a network device. The following protocols are
supported:

• ospf – attributes are area, routerId. May have an optional neighbors section.

• rip – no attributes

• eigrp – attributes are autonomousSystem, routerId. May have an optional neighbors section.

• bgp - attributes are autonomousSystem, routerId. May have an optional neighbors section.

• is-is – attributes are area, systemId. May have an optional neighbors section.

11.2.14 iproutes

<iproutes vrfName=name>
<!-- iproute objects -- >
<iproute iptype=iptype dest=ipaddr nexthop=ipaddr ifindex=integer metric1=integer
→˓metric2=integer..metric5=integer proto=protocol />
</iproutes>

Example:

<iproutes>
<iproute iptype="ipv4" dest="172.16.1.0/24" proto="local" metric1="0" nexthop="0.0.0.
→˓0" ifindex="1"/>
<iproute iptype="ipv4" dest="172.16.1.3/32" proto="local" metric1="0" nexthop="0.0.0.
→˓0" ifindex="1"/>
<iproute iptype="ipv4" dest="192.168.0.2/32" proto="local" metric1="0" nexthop="0.0.
→˓0.0" ifindex="3"/>
</iproutes>
<iproutes vrfName="BLUE">
<iproute iptype="ipv6" dest="::3:1:1:1:0/120" proto="local" metric1="0" nexthop="::"
→˓ifindex="2"/>
<iproute iptype="ipv4" dest="10.0.2.2/32" proto="local" metric1="0" nexthop="0.0.0.0
→˓" ifindex="2"/>

86 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

<iproute iptype="ipv4" dest="10.0.3.0/24" proto="local" metric1="0" nexthop="0.0.0.0
→˓" ifindex="6"/>
<iproute iptype="ipv4" dest="10.0.3.2/32" proto="local" metric1="0" nexthop="0.0.0.0
→˓" ifindex="6"/>
<iproute iptype="ipv4" dest="10.0.2.0/24" proto="local" metric1="0" nexthop="0.0.0.0
→˓" ifindex="2"/>
<iproute iptype="ipv6" dest="::4:1:1:1:0/120" proto="local" metric1="0" nexthop="::"
→˓ifindex="6"/>
</iproutes>

The iproutes section contains multiple iproute objects. There can be more than one iproutes section in a netobject;
they are distinguished by a vrfName attribute (VRF instance name). If no vrfName attribute is present, then this is the
global routing table (default routing table). SNMP will only discover global routing tables. Cisco remote login can
discover routing tables associated with VRFs.

The iproute objects within an iproutes section contains information from the routing table of a netobject obtained by
SNMP or by direct login. The network destination is specified by the dest attribute in destaddress*(no host bits)/*cidr
format. The nexthop attribute specifies the next hop for this route. There can be up to five routing metric attributes
(metric1 through metric5) included. A value of -1 means that metric is not used. Metric1 is the primary routing metric,
the other metrics are alternates. The ifindex attribute specifies the physical port that this route uses.

The proto attribute returns a string that indicates the routing protocol (these strings are defined in the SNMP IANA-
RTPROTO MIB and/or Cisco output) and is included for informational purposes.

11.2.15 osguess

<osguess various attributes >

Example:

<osguess accuracy="100" family="Linux" vendor="Linux" type="general purpose" name=
→˓"Linux 2.6.32 - 2.6.33"/>

The osguess object contains the OS guess from Nmap. The attribute fields are documented in the Nmap DTD for
Nmap’s XML output. Netmapper only returns the accuracy, family, vendor, type, and name attributes produced by
Nmap and only the osguess with the highest accuracy is saved in the XML.

11.2.16 snmp

<snmp sysDescription=”system description returned by SNMP query” >

Example:

<snmp sysDescription="Linux lxle2lta 3.13.0-39-generic #66-Ubuntu SMP Tue Oct 28
→˓13:30:27 UTC 2014 x86_64"/>

Contains the system description (OID 1.3.6.1.2.1.1.1) returned by a successful SNMP query.

11.2.17 domainControllerRoles

<domainControllerRoles various attributes >

11.2. Detailed XML Output Schema 87



Netmapper User Guide, Release 2.1.1722

The domainControllerRoles section is present if this node has been identified as a domain controller. The attributes
are various subroles for the domain controller and have a value of “True” if present. The subrole attributes are:

• IsRoleInfrastructure =”True”

• IsRoleRID=”True”

• IsRoleDomainNaming=”True”

• IsRolePDC=”True”

• IsRoleSchema=”True”

11.2.18 exchangeServerRoles

<exchangeServerRoles various attributes>

The exchangeServerRoles section is present if this node has been identified as an exchange controller. The attributes
are various subroles for the exchanges controller. All attributes will always be present, and will either have a value of
“True” or “False”.

• IsEdgeServer =”True”|”False”

• IsUnifiedMessagingServer=”True”|”False”

• IsMailboxServer=”True”|”False”

IsClientAccessServer=”True”|”False”

• IsHubTransportServer=”True”|”False”

• IsProvisionedServer=”True”|”False”

11.2.19 services

<services>
<service various attributes>

</services>

Example:

<services>
<service status="stopped" startmode="manual" name="ALG"/>

</services>

This information is retrieved by remote login and contains the list of running services on the remote machine. The
attributes are:

• status=”running”|” stopped”– service status.

• startmode=” manual”|”auto”– service start mode.

11.2.20 hostname

<hostname fqdn=fqdn_name name=hostname/>

Example:

88 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

<hostname fqdn="ws2012ex2010.test3.net" name="ws2012ex2010"/>

This information is retrieved by remote login and contains the list of running services on the remote machine. The
attributes are:

• fqdn=fqdn_name– fully qualified domain name

• hostname=hostname – host name

11.2.21 os

<os version=version name=name manufacturer=manufacturer />
<patches>
<patch objects>

</patches>
</os>

Example (Windows):

<os version="6.3.9600 Build 9600" name="Microsoft Windows Server 2012 R2 Datacenter
→˓64-bit" manufacturer="Microsoft Corporation">
<patches>
<patch name="KB2862152"/>
<patch name="KB2868626"/>

</patches>
</os>

Example (CentOS):

<os version="6.6" name="CentOS" manufacturer="Linux">
<patches>
<patch value="2.6.32-504.el6.x86_64" name="kernel version"/>

</patches>
</os>

This information is retrieved by remote login and is the OS and patch information for the host. The OS attributes are
self-explanatory. For Windows OSes, each patch object contains a single name attribute as shown. For CentOS OSes,
there is only one patch object with attributes name=”kernel version” and a value attribute that is the kernel version.

11.2.22 physicalserver, cpus, disks, memory

<physicalserver>
<memory ram=size vmem=size>
<cpus>
<!--cpu objects -- >
<cpu name="">

</cpus>
<disks>
<!--disk objects -- >
<disk name=name size=size DriveType=drivetype ProviderName=remotepath>

</disks>
</physicalserver>

Example (Windows):

11.2. Detailed XML Output Schema 89



Netmapper User Guide, Release 2.1.1722

<physicalserver>
<memory ram="2047 MiB" vmem="3839 MiB"/>
<cpus>
<cpu name="Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz"/>

</cpus>
<disks>
<disk size="61438 MiB" name="C:"/>

</disks>
</physicalserver>

Example (CentOS):

<physicalserver>
<memory ram="1922372 kiB" vmem="142992 kiB"/>
<cpus>
<cpu name="Intel(R) Xeon(R) CPU E7-4830 v2 @ 2.20GHz"/>

</cpus>
<disks>
<disk size="2147 MB" name="/dev/mapper/vg_centos6base-lv_swap"/>
<disk size="18.8 GB" name="/dev/mapper/vg_centos6base-lv_root"/>
<disk size="21.5 GB" name="/dev/sda"/>

</disks>
</physicalserver>

This information is retrieved by remote login and contains CPU, memory, and local disk information attributes of the
host.

The memory object has attributes of ram (physical memory size) and vmem (virtual memory size).

The cpus object has one cpu object for each CPU on the host. The cpu object has only a name attribute.

The disks object has one disk object for each local disk on the host. The disk object has size, name, ProviderNam*e,
*VolumeName, DriveType attributes. The ProviderName attribute is set if the disk is remote mounted and its value
is the remote path. The VolumeName attribute is the local name for a remote mounted disk. The DriveType at-
tribute is only used by Windows OSes and indicates the type of drive (LocalDisk, RemoveableDisk, CompactDisk,
NetworkDisk).

11.2.23 applications

<applications>
<!--application objects -- >
<application name=name vendor=vendor version=version >

</applications>

Example (Windows):

<applications>
<application Vendor="Microsoft Corporation" name="Microsoft Visual C++ 2008
→˓Redistributable - x86" Version="9.0.30729.4148"/>
</applications>

Example (CentOS):

<applications>
<application Vendor="CentOS" name="busybox" Version="1.15.1"/>

</applications>

90 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

This information is retrieved by remote login and the list of applications installed on the host. The application object
has name, Vendor, and Version attributes.

11.2.24 fileshares

<fileshares>
<!--fileshare objects for shared disks>
<!--permissions objects for each shared disk>

</fileshares

Example (Windows):

<fileshares>
<fileshare AllowMaximum="True" Path="C:\Program Files\Update
→˓Services\UpdateServicesPackages" MaximumAllowed="" name="UpdateServicesPackages">
<permissions>
<permission IdentityReference="WS2012WSUS\WSUS Administrators" AccessControlType=

→˓"Allow" InheritanceFlags="None" PropagationFlags="None" IsInherited="False"
→˓FileSystemRights="FullControl"/>
</permissions>

</fileshare>
</fileshares>

The fileshare object represents disks available for sharing via SMB or NFS. The SMB information is retrieved by
WMI via: Get-WmiObject -Class Win32_share. The NFS information is retrieved by WMI via: Get-WMIObject
-Class MSFT_NfsSharePermission -NameSpace RootMicrosoftWindowsNFS

The fileshare object has a sharetype attribute that is “nfs” for an NFS share and “smb” for an SMB share. The other
attributes on the fileshare object are from the WMI query and are Windows specific.

The fileshare object has a list of permissions objects whose attributes are set by the returned WMI query and are
windows specific.

11.2.25 firewall

<firewall>
<profiles>
<!--profile objects for Windows OS>

</profiles>
<rules>
<!--rule objects -- Tags are OS-specific other than name>

</rules>
<firewall/>

11.2. Detailed XML Output Schema 91



Netmapper User Guide, Release 2.1.1722

Example (Windows):

<firewall>
<profiles>
<profile name="Domain" state="on"/>
<profile name="Public" state="on"/>
<profile name="Private" state="on"/>

</profiles>
<rules>
<rule EmbedCtxt="@FirewallAPI.dll,-25000" Desc="@FirewallAPI.dll,-25358" Action=

→˓"Allow" Active="TRUE" regvalue="v2.
→˓10|Action=Allow|Active=TRUE|Dir=Out|Protocol=41|App=System|Name=@FirewallAPI.dll,-
→˓25352|Desc=@FirewallAPI.dll,-25358|EmbedCtxt=@FirewallAPI.dll,-25000|" Dir="Out"
→˓Name="@FirewallAPI.dll,-25352" Protocol="41" App="System"/>
</rules>

</firewall>

Firewall information is retrieved via remote login. For Windows OSes, there are profile and rule objects which are
read from the registry.

Each profile object has a name and state attributes as shown. The name attributes are standard and have the val-
ues shown. The state attribute value is either “on” or “off”. The state value is stored in the registry under the key
HKLMprofilenameEnableFirewall as a DWORD value of 0 (off) or non-zero (on).

The firewall rules are read from the registry location: HKLMSYSTEMCurrentControlSetservicesSharedAccessParam-
etersFirewallPolicyFirewallRules

The regvalue attribute in the firewall object is the raw registry value string for the rule. The other attributes are parsed
out of this rule by using the ‘|’ separator.

Example (CentOS 7):

<firewall>
<rules>
<rule sources="" forward-ports="" regvalue="work" icmp-blocks="" services="dhcpv6-

→˓client ipp-client ssh" ports="" interfaces="" masquerade="no"/>
</rules>

</firewall>

The firewall section for CentOS 7 does not the profiles section. The firewall attributes are parsed from the column
fields are returned by the command “firewall-cmd –list-all-zones”.

Example (CentOS 6):

Centos6 hosts do not have a firewall section since their firewall rules are stored in a configuration file named
/etc/sysconfig/iptables – this file is retrieved and is saved as an rloginDataObject and its archive rolename is Cen-
tos6_firewallrules. CentOS 7 does not use iptables.

11.2.26 transient

A transient section contains information that either changes on each scan or is temporary information cached in the
XML for development purposes. It should not be necessary for external parsers to parse information in a transient
section – it is documented here for informational purposes.

transient section for netobject

The transient section in the netobject section can contain two different tables with an example shown below:

92 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

<addresstable>
<addrtblentry macaddress="b8:27:eb:30:cd:ec" ipaddress="200.168.3.50" ifindex="4"/>

</addresstable>
<bridgetable macaddress=macaddress>
<bridgetblentry macaddress="78:da:6e:e6:3d:0" portnum="1" vlanid="1"/>

</bridgetable >

The addresstable section contains addrtblentry entries that map mac addresses to IP addresses. Once this table is read,
these mac address to IP address mappings are propagated out to appropriate ipaddress sections contained in interface
sections.

The bridgetable section contains bridgetblentry entries that map a mac address to a port number that this mac address
was seen on. This information is used to build l2connection sections.

11.2.27 vmwareVapp

<vmwareVapps>
<!--Vmware Vapp contents ?

</ vmwareVapps>

Example:

<vmwareVapps>
<host name="dasi-vcenter-2">
<vapp name="wsus2008">
<vm name="5011904c-6e71-779f-a686-d120248a1566"/>
<vm name="5011d8f0-827e-05cd-2911-e025797bb9bb"/>
<vm name="5011d5b7-38f5-88a1-cde8-d9c9bd00c064"/>
<vm name="50117b29-35c1-77e5-ab4e-dca4e143b401"/>
<vm name="5011d59c-8926-8fe0-5006-9424b316b1f1"/>
<vm name="5011cd27-81f5-4894-4141-d4b3f93bc63f"/>
</vapp>

</host>
</ vmwareVapps>

The vmwareVapps section gives the VMware Vapps retrieved by VMware API host query.

The host object contains the vapps found on that host; the name attribute is the name of the host.

The vapp object lists the virtual machines in the Vapp; the name attribute is the name of the Vapp.

Each vm object in a vapp object has a name attribute that is the unique instance identifier of this virtual machine that
resides in the vapp.

11.2.28 rloginDataObjects

<rloginDataObjects>
<!--Rlogin data archives ?

</ rloginDataObjects>

The rloginDataObjects section is used to store retrieved files from the host in a base-64 encoded ZIP archive format.

Each rloginDataObject under the rloginDataObjects section has the form:

11.2. Detailed XML Output Schema 93



Netmapper User Guide, Release 2.1.1722

<rloginDataObject hostname=hostnameUniquified timestamp=tsString id=uuidForNetObject>
<archive rolename=rolename>
<archiveDataLines>
<archiveDataLine value=base64string/>
...many archiveDataLines...
</archiveDataLines>
<archiveFiles>
<archiveFile name=localFilename orgpath=originalPathOnHost/>
</archiveFiles>

</archive>
</rloginDataObject>

The attributes for the rloginDataObject are:

• hostname=hostnameUniquified – The host name that this data was retrieved from; uniquified by adding part of
the netobject’s uuid to the end of the hostname.

• timestamp=tsString – A timestamp string indicating when this data was retrieved from the remote host.

• id=uuidForNetObject – The uuid of the NetObject that owns this data.

Each rloginDataObject can have multiple archive objects, each archive object contains the file(s) associated with some
role data or default data retrieved from that hose. Each archive object is a base-64 encoded ZIP archive containing one
or more files for the role or default data.

The rolename attribute of the archive object is the identifying role tag or default data tag for this data. Under an archive
object are multiple archiveDataLine objects, each containing a value attribute that is the base64 encoded line for this
entry. Reconstructing the ZIP archive for this data requires all value attributes of archiveDataLine objects to be written
to a file in the same order as found in the archive object, and then decoding this base64 file back to its binary form –
this will be the original ZIP archive.

Following the archive object is an archiveFiles object containing one or more archiveFile objects that gives the files in
the archive.

The attributes for the archiveFile object are:

• name=localFilename – The name of the file in the archive.

• orgpath=originalPathOnHost – The name of the file on the remote host.

Example:

<rloginDataObject hostname="centos6ns.test2.net-b0d50d61" timestamp="2015-12-16_16-45-
→˓21" id="b0d50d61-a372-11e5-b708-00505691a02e">
<archive rolename="DHCP_Server">
<archiveDataLines>
<archiveDataLine value=

→˓"UEsDBBQAAAAAALqFkEfMyeEdygwAAMoMAAALAAAAZGhjcC5jb25maWcjDQojIFNhbXBsZSBjb25m"/>
...other lines not included...
</archiveDataLines>
<archiveFiles>
<archiveFile orgpath="/etc/dhcp/dhcpd.conf" name="dhcp.config"/>
</archiveFiles>

</archive>
</rloginDataObject>

When an XML file with rloginDataObject is read into memory, the compressed archives are kept as is. To examine
the data in uncompressed form, the File > Expand Rlogin Data menu choice is used.

This expands the data to the current working directory in the following directory structure:

94 Chapter 11. Appendix



Netmapper User Guide, Release 2.1.1722

RloginNodeConfigData\tsString\hostnameUniquified1\rolename1\filename1
| | \filename2
| | \filenameN
| \rolename2\filename1
| | \filename2
| | \filenameN
| \rolenameN\filename1
| \filename2
| \filenameN
\hostnameUniquified2\rolename1\filename1

| \filename2
| \filenameN
\rolename2\filename1
| \filename2
| \filenameN
\rolenameN\filename1

\filename2
\filenameN

etc.

11.3 Python API Interface

This section is intentionally left blank at this time.

11.3. Python API Interface 95



Netmapper User Guide, Release 2.1.1722

96 Chapter 11. Appendix



CHAPTER

TWELVE

GLOSSARY

ADSI Active Directory Service Interfaces

CIDR Classless Inter-Domain Routing

DASI Distributed Analytics and Security Institute

DNS Domain Name Server

FQDN Fully-Qualified Domain Name

LDAP Lightweight Directory Access Protocol

SNMP Simple Network Management Protocol

WMI Windows Management Instrumentation

WSUS Windows Server Update Services

VRF Virtual Routing Framework

VDC Virtual Device Context

97


	Executive Summary
	Requirements
	Host Requirements
	Remote Target Requirements

	Installation
	Usage Overview
	General Usage
	Mapping Tab Details
	Configuration Tab Details
	Visualization Tab Details
	Credentials Tab Details
	Network Difference Tab Details
	View Devices Tab Details

	Custom XML Tagging
	User Custom Query
	Remote Login and Node Identification
	Windows OS Default Data Retrieval
	Windows OS Role Data Retrieval
	Linux OS Default Data Retrieval
	Linux OS Role Data Retrieval
	Hypervisor Role Data Retrieval
	Cisco Network Appliance Data Retrieval

	Adding new Query/Parse engines
	Query/Parse Overview
	Dynamic Import
	Query action (default query):
	Query action (role query):
	Other Comments:

	XML Output Schema
	rloginDataObjects

	Automated Regression Testing of VMware Virtual Networks
	Regression Test Data File
	Running a Regression Test
	Encrypted Attributes

	Appendix
	Initialization File Key Words and File Format
	Detailed XML Output Schema
	Python API Interface

	Glossary

