
Paper ID #16569

Employing Literate Programming Instruction in a Microprocessors Course

Dr. Bryan A. Jones, Mississippi State University

Bryan A. Jones received the B.S.E.E. and M.S. degrees in electrical engineering from Rice University,
Houston, TX, in 1995 and 2002, respectively, and the Ph.D. degree in electrical engineering from Clemson
University, Clemson, SC, in 2005. He is currently an Associate Professor at Mississippi State University,
Mississippi State, MS.

From 1996 to 2000, he was a Hardware Design Engineer with Compaq, where he specialized in board lay-
out for high-availability redundant array of independent disks (RAID) controllers. His research interests
include engineering education, robotics, and literate programming.

Dr. Mahnas Jean Mohammadi-Aragh, Mississippi State University

Dr. Jean Mohammadi-Aragh is an assistant research professor with a joint appointment in the Bagley
College of Engineering dean’s office and the Department of Electrical and Computer Engineering at Mis-
sissippi State University. Through her role in the Hearin Engineering First-year Experiences (EFX) Pro-
gram, she is assessing the college’s current first-year engineering efforts, conducting rigorous engineering
education research to improve first-year experiences, and promoting the adoption of evidence-based in-
structional practices. In addition to research in first year engineering, Dr. Mohammadi-Aragh investigates
technology-supported classroom learning and using scientific visualization to improve understanding of
complex phenomena. She earned her Ph.D. (2013) in Engineering Education from Virginia Tech, and
both her M.S. (2004) and B.S. (2002) in Computer Engineering from Mississippi State. In 2013, Dr.
Mohammadi-Aragh was honored as a promising new engineering education researcher when she was
selected as an ASEE Educational Research and Methods Division Apprentice Faculty.

c©American Society for Engineering Education, 2016



Employing Literate Programming Instruction 
in a Microprocessors Course 

1. Abstract 
Learning to program is difficult and has been documented as a persistent problem not just for 
computer science majors, but also for other engineering majors who use programming as a tool 
within their disciplines. One solution may lie in Knuth’s literate programming paradigm, which 
treats a program as an essay, intermingling code with explanation in a beautifully typeset docu-
ment. This stands in contrast to traditional programming pedagogy where difficult-to-understand 
code is isolated from its explanation, in a separate file from the flowcharts and text which detail 
the operation of the program. Knuth’s literate programming paradigm is consistent with cognitive 
load theory, which states that keeping related concepts close, temporally or spatially, can improve 
the ability of students to grasp difficult ideas. Based on this, we hypothesize that programs inter-
mingled with explanation and typeset as a document will improve student learning when compared 
to traditional instruction in which programs and their explanation remain separated. In this paper, 
we examine the use of literate programming in a junior-level course on microprocessors in the 
Department of Electrical and Computer Engineering using both a student survey and analysis of 
test scores. By alternating between literate programs/documents and traditional programs with ac-
companying explanations, we evaluate learning gains measured by performance on tests with and 
without literate programming. Results show a mild preference by students for the literate program-
ming form, and analysis of student performance on tests shows small (but statistically insignifi-
cant) gains when using literate programming. Based on these results, we discuss future directions 
for this new approach to programming pedagogy. 

2. Introduction 
A glance at current events shows our society’s dependence on software. In late January 2016, Nest, 
Inc., which developed and produces a thermostat controllable via smartphones and accessible via 
WiFi, pushed a software update to all their devices. Unfortunately, bugs in this update caused users’ 
thermostats to drain the battery, disabling the thermostat and leaving heaters turned off in the mid-
dle of winter1. Angry complaints of babies waking up at 4 AM to a room at 62°F and panicked 
calls to restore their homes to operation flooded Twitter and on-line forums. As another example, 
Volkswagen now faces billion-dollar fines for “defeat device” software in its diesel cars which 
caused them to pass EPA emissions tests in the lab while emitting much higher pollutants during 
actual driving conditions2. We depend on the integrity of on-line banking, expect Facebook to 
connect us with our friend’s activities, and trust cruise control in cars to drive us safely. 

In spite of the pressing need for capable, creative, and above all competent programmers, educators 
struggle to effectively train students in these essential skills. McCraken’s comprehensive exami-
nation of first-year CS students3 reports that only approximately 20% of the surveyed students 
could solve programming problems expected by their instructors. In addition, the importance of 
programming continues to grow; not only are CS and ECE students expected to master the art of 
programming, but student mastery of domain-specific languages such as MATLAB, R, Maple, and 
Mathematica are now required to perform analysis across a number of engineering disciplines. 



The sad state of programming pedagogy may well be the result of the elimination of writing when 
writing a program. That is, textbooks present a program in well-crafted essays, instructors coach 
students in developing flow charts and design documents, but all this beautiful writing is sadly 
abandoned when the actual program is written, resulting in a monospaced monstrosity only a com-
piler could love, as shown in Figure 1(a). 

We assert that good writing leads to good thinking, and good thinking to good programs. In order 
to improve computer science education, writing must be reintroduced into writing a program. This 
approach follows Knuth’s literate programming paradigm, which views a program as an essay, 
intermingling code with explanation in a beautifully typeset document, as shown in Figure 1(b). 
This transformational idea produces a radical shift in beliefs about what defines a program: a pro-
gram is, first and foremost, an essay written to fellow programmers explaining the purpose behind 
and structure of a specific implementation, which also captures that implementation in an execut-
able form. That is, a program is not primarily written for a computer, but for a person. 

Unfortunately, Knuth’s literate programming system closed more doors than it opened. While it 
produced beautiful documents, composing these documents and understanding the code they pro-
duced proved difficult (see Figure 2), prompting all prior investigations of pedagogical use of lit-
erate programming to report that students found the literate programming system hard to use. If 
students can’t easily interact with their code in its document form, they will not think of their code 
as a document; tools must therefore support this code-as-document belief to support effective ped-
agogical innovations. This paper therefore re-examines pedagogical use of literate programming 
techniques with CodeChat, a simple, easy-to-use literate programming system. 

 

Figure 1: CodeChat, the literate programming implementation used to conduct research for this paper, transforms tradi-
tional source code in (a) to the web page shown in (b) as shown by the arrow.  

                                             (a)                                                                                 (b) 

// 161: Assert CE. 
_LATB12=1; 
// 162: Send address of temperature LSB 
// (0x01): 
// 
// .. image:: max31722_registers.png 
ioMasterSPI1(0x01); 
// 163: Read data 
u8_lsb=ioMasterSPI1(0); 
u8_msb=ioMasterSPI1(0); 
// 164: Deassert CE. 
_LATB12=0; 
// 
// I2C 
// === 
// Available I2C functions: 
void startI2C1(void); 
void rstartI2C1(void); 
void stopI2C1(void); 
void putI2C1(uint8_t u8_val); 
uint8_t getI2C1(uint8_t u8_ack2Send); 
uint8_t putNoAckCheckI2C1(uint8_t u8_val); 
 



As a first step in the process of reintroducing writing into writing a program, this paper discusses 
the results of the use of literate programming techniques by instructors as models for students, in 
the form of a series of in-class exercises. We hypothesize that students will prefer the literate pro-
gramming form of a program (illustrated in Figure 1(b)) to the traditional form of a program shown 
in Figure 1(a). In addition, we hypothesize that students will demonstrate greater understanding of 
material presented in literate programming form, instead of presented as a combination of tradi-
tional code supplemented by data sheets. 

3. Background 

3.1 Literate programming 
Knuth coined the term literate programming (LP)4, in which an author composes an essay contain-
ing both explanation for readers and executable statements for compilers. This creation of a docu-
ment consisting of intermingled code and prose differs radically from the traditional software de-
velopment model, which views comments as an optional accompaniment to the code and makes 
no attempt to connect these scattered comments into a coherent whole. That is, “you do not docu-
ment programs (after the fact), but write documents that contain the programs.”5 For the first time, 
software developers could view a program as a document; code with comments alone simply does 
not look like nor read like an essay, no matter how well written, as illustrated in Figure 1(a). Edu-
cators can provide their students with an executable textbook – high-quality prose with detailed 
explanations, which at the same time is a program students can compile, execute, and explore. 

This transformation of perspective – the understanding that a program is and, at its core, should be 
an essay – succeeds at several levels. First, at an esthetic level, the typeset results shown in Figure 
1(b) are surprisingly beautiful, particularly when compared with a monospaced font in which 
source code is otherwise shown. This typeset output employs a proportionally-spaced font which 
is easier to read, includes headings, contains typographical emphasis such as bold or italics, and 
allows the inclusion of diagrams, all of which increase comprehension. At a deeper, more experi-
ential level, this typeset output reinforces the belief that a program is a document, encouraging 
programmers to write documents, instead of disjointed comments. Finally, this underlying belief 
that a program is a document then opens to the authors the multitude of advantages which accrue 
to writers: creation of and reflection on the overall structure of the essay; the ability to easily in-
clude others in the development process; the inclusion of the creative ideas which produced a 
particular implementation. 

This last point bears further investigation. Traditional programming focuses on the what – the code, 
which defines a specific implementation. This information provides a compiler all the information 
needed to blindly execute these instructions. To borrow an analogy6, if Aunt Matilda bakes a cake, 
the tools of science can determine the what – chemical composition, material properties, and nu-
tritional content. These tools, by nature, cannot determine the why; to determine this, we must ask 
Aunt Matilda the purpose for which she baked the cake. Likewise, code alone tells us what, but 
not why. This why represents a vital, missing piece in the traditional software development pro-
cess. Why was this specific implementation chosen? Was it a casual, unthinking decision, or the 
result of hours of debugging to find and correct a rare mode of failure? This explanation, stating 



the purpose behind a snippet of code, provides vital insight and must be communicated through 
writing, a practice central to the exercise of literate programming. 

While brilliant, WEB, Knuth’s initial literate programming implementation, hindered its adoption. 
First, as shown in Figure 2(a), the source document consists of a series of cryptic formatting in-
structions, some of which allow the inclusion of Pascal code, the only programming language 
supported by WEB. These cryptic TeX-based formatting commands raised a high barrier of entry, 
discouraging adoption. Second, the choice of an additional source document means that the for-
matted document shown in Figure 2(b) and the source code shown in Figure 2(c) are derived using 
LP tools (WEB’s tangle and weave) from the source document: neither can be directly edited. 
Making a minor edit to the formatted document therefore requires finding the text in the source 
document which produced it, editing that, then regenerating the formatted document to verify that 
the correct edit was performed. Likewise, modifying the source code requires a similarly laborious 
process. Minor textual edits become major chores, and the use of traditional development tools 
such as debuggers and profilers becomes extremely difficult. 

Later literate programming implementations addressed the first problem: weaknesses in language 
support and formatting. Some variants support additional programming languages: CWEB (for C), 

 

Figure 2: Knuth's original literate programming system, WEB4, transforms the input source document in (a) to the format-
ted output in (b) and the source code in (c) as illustrated by the large arrows. To edit (b) or (c), the corresponding source 
text in (a) must be located, edited, then (b) and (c) regenerated to verify the edit, making any changes laborious. 

(a) 

(b) 

(c) 



FWEB (Fortran, C, and C++), xmLP (XML), pyWeb, FunnelWeb, nuweb, and noweb (any lan-
guage). Others provide simpler formatting syntax: nuweb uses LaTeX; noweb a simpler set of 
literate programming directives and also allows use of LaTeX; pyWeb uses restructured text. Pie-
terse’s survey reviews other literate programming approaches7. However, the second problem ex-
ists by Knuth’s design: choosing a source document from which LP tools produce both source 
code and a formatted document prevents direct modification of either the source code or the for-
matted document, isolating authors from the writing they must do. For these reasons, no literate 
programming tool has gained widespread acceptance in the programming community or for sus-
tained pedagogical use. 

This last point is substantiated by noting that most education-focused research using literate pro-
gramming tools took place in the 1990s. Efforts in this area include using LP tools to grade home-
work submissions8, teach programming9 (with success, but accompanied by student complaints 
about the difficulty of LP tools), or write better comments10 (with success, but again including 
students complaints on the difficulty of debugging LP-generated code). 

In contrast, documentation generators, such as Doxygen and JavaDoc, produce a document directly 
from formatted comments within source code, thus overcoming the second problem. They are 
widely used by programmers, with thousands of programs which employ these tools or their vari-
antsa, b. While these tools were inspired by LP principles11, they can only be used to document the 
external interface (the application programming interface, or API), not the internal working of a 
program, thus losing the core benefits of literate programming. Therefore, this paper employs the 
CodeChat tool12 which combines the strengths of both documentation generators and LP tools: it 
builds a formatted document directly from source code, using human-readable restructured text as 
markup in comments. In addition, it contains a synchronization mechanism which matches source 
code with the corresponding web output, making editing of either straightforward. This simplified 
approach provides a viable platform for conducting research into the use of literate programming 
in computer science pedagogy. 

3.2 Cognitive load theory 
Sweller’s Cognitive Load Theory13, 14, 15 (CLT) posits that new concepts (termed schema) must be 
learned in the limited capacity of short-term memory before they can be stored in and employed 
by long-term memory. The cognitive load of acquiring a new schema can be categorized into sev-
eral distinct loads. When a schema consists of multiple, interconnected ideas, they must all fit in 
the limited capacity of short-term memory for learning to occur. The intrinsic cognitive load refers 
to the number of interconnected ideas which are required to learn a new schema. Poor instructional 
design can impose extraneous cognitive load, in which the instructional technique unnecessarily 
increases the number of interconnected ideas, making a schema harder to acquire. When intrinsic 
load is low, the additional extraneous loading has little effect on learning. However, high intrinsic 
loading combined with extraneous loading hinders learning. Therefore, instructors should strive to 
reduce extraneous load produced by their presentation of the material to improve student learning. 

                                                 
a See http://www.stack.nl/~dimitri/doxygen/projects.html. 
b JavaDoc is included in Oracle’s Java implementation and used to document its API, resulting in wide adoption in 
the Java community. See, for example, https://docs.oracle.com/javase/8/docs/api/overview-summary.html. 



Much of the instruction in the microprocessors course requires students to integrate material from 
multiple sources. For example, the function shown in Figure 1(a) also depends on understanding 
of a timer provided in the textbook used in the course, and specific reference to the definition of 
bits in timer 2’s control register which is provided in the microcontroller’s datasheet. Cognative 
load theory predicts that when these elements are spatially or temporally separated, such as refer-
ring to a textbook, a datasheet, and traditional source code, additional extraneous load is imposed 
to successfully integrate these elements. Because literate programming encourages including all 
these elements as a part of the document, as shown in Figure 1(b), we hypothesize that the use of 
literate programs will reduce extraneous load, therefore improving students’ ability to master these 
concepts, which will lead to higher test scores. 

4. Approach 
The authors instruct ECE 3724c, a course offered within the Department of Electrical and Com-
puter Engineering at Mississippi State University, which focuses on introducing students to micro-
processors through both lecture and laboratory exercises. The first half of the course focuses on 
instruction in assembly language, and is accompanied by labs in which students translate a C pro-
gram to assembly, then simulate their assembly code to demonstrate its correctness. The second 
half of the course requires students build a simple microcontroller and its supporting components 
on a wireless protoboard, then to develop C programs to interface with external peripherals con-
nected to the microcontroller. The first two tests cover assembly skills, while the third test and 
portions of the cumulative final focus on peripheral interfacing in C. 

Students typically perform well in introductory assembly instruction covered in test 1, then strug-
gle with more advanced assembly, such as pointers and extended-precision operations, in test 2. 
Likewise, introductory peripheral interfacing in C covered in test 3 typically produces good scores, 
while students struggle with more advanced concepts (I2C and SPI busses, A/D and D/A convert-
ers) and their implementation in C on the final. 

This paper made use of a cohort of 58 students enrolled in two sections of ECE 3724 during the 
Fall 2015 semester. One instructor, leading the control group of 27 students, employed no literate 
programming methods in their section. The other instructor alternated use of traditional with lit-
erate programming techniques in their section of 31 students. Specifically, instruction using tradi-
tional coding methods was employed for test 1 material, by developing and discussing code snip-
pets in assembly during in-class exercises. All code written during class was then uploaded to 
Githubd, a social coding website, providing convenient web access to the code for the students. 
Next, material for test 2 was developed using literate programming techniques to produce a docu-
ment during in-class exercises; both the resulting assembly code and its rendering to a literate 
programming document were posted on Github and the course websitee, respectively. The same 
approach was taken for the second half of the course, which employs the C programming language. 
Test 3 material was covered using traditional techniques, while the material for the final was de-
veloped as a set of literate programming documents; for both cases, the C source and the resulting 

                                                 
c All course materials are available at http://courses.ece.msstate.edu/ece3724. 
d See https://github.com/bjones1/ece3724_inclass. 
e See http://courses.ece.msstate.edu/ece3724/in_class. 



literate programming documents were available via the web. Figure 3 shows a comparison between 
traditional source code (in this case, assembly) used for Test 1 in-class exercises and its literate 
programming form used for Test 2 instruction. Likewise, Figure 1 compares traditional C code for 
Test 3 preparation with the literate programming variant for the final. 

4.1 Discussion 
Test 1 materialf, consisting of introductory assembly, can typically be taught by focusing exclu-
sively on the code itself. While literate programming provides better formatting and organization, 
little gain should be expected from a cognitive load perspective because the source code itself 
contains all the necessary resources. Test 2 material, particularly when discussing pointers, exacts 
a heavier cognitive load. Students must refer to a memory map (in the form of a table), carefully 
examine the C code to translate, then write the resulting assembly code. Therefore, the ability of 
literate programming to integrate memory maps into the source code should reduce extraneous 
cognitive load and improve comprehension. Figure 3 compares these two approaches. 

While some test 3 material relies on information available within the source code, some does not. 
For example, to fully understand the operation of code to configure a timer in Figure 1(a), students 
must refer to the microcontroller’s timer documentation. This higher cognitive load should produce 
reduced comprehension using traditional techniques, since students’ attention must be split be-
tween the code and supporting datasheets. Final material includes relatively complex bus protocols 
such as I2C and SPI, both of which must be used to interact with peripherals. The ability to integrate 

                                                 
f All tests and solutions for the course are publicly available at http://courses.ece.msstate.edu/ece3724/old/history.html. 

 

Figure 3: Traditional assembly code in (a), compared to its literate programming form in (b). 

(a) (b)

while_top: 
;        W0   XX   W0       W1 
; while (u8_a && (u16_c + 0x2345)) { 
;                -------W2------- 
; Left 
; ==== 
; Input 
mov.b u8_a,WREG 
; Process 
; #70 
cp.b W0,#0 
; Output 
; #71: u8_a True 
bra nz,think_more 
; #72: u8_a False 
bra z,while_end 
 
; Right 
; ===== 
think_more: 
; Input 



related information with the code should reduce extraneous cognitive load, producing improved 
comprehension and scores. For example, comment 162, “Send address of temperature LSB 
(0x01)” in Figure 1(b) is immediately followed by the table of register addresses, which gives the 
temperature LSB address as 0x01. Therefore, the following line of code, ioMaster-
SPI1(0x01);, clearly sends the temperature LSB address of 0x01 across the I2C bus. 

4.2 Data collection 
To evaluate student performance, specific questions were selected on the tests and final which 
require writing snippets of code in C or assembly. Table 1 shows the test questions used to examine 
student performance. 

In addition, students in the experimental section participated in an anonymous in-class survey 
given at the end of the course to provide feedback on the use of literate programming versus tra-
ditional code in the course. The questions are: 

1. How often did you refer to code discussed in class posted at 
https://github.com/bjones1/ece3724_inclass? Frequently, several times, a few times, once, 
or never? 

2. On a scale of 1 to 10, where 1 is the least helpful and 10 is the most helpful, how helpful 
was providing this code on the web? 

3. Comments – what would make the code posted more helpful? 
4. How often did you refer to the code discussed in class posted in literate programming form 

at http://courses.ece.msstate.edu/ece3724/in_class? Frequently, several times, a few times, 
once, or never? 

5. On a scale of 1 to 10, where 1 is the least helpful and 10 is the most helpful, how helpful 
was providing this code on the web? 

6. Comments – what would make the code posted in this form more helpful? 
7. Which format did you find more helpful? Traditional, literate programming, neither, or 

don’t care. 
8. In terms of the code discussed, what would help you learn more during this course? 

5. Results 
Because students could provide multiple free-form answers to the questions above, the results were 
coded based on the categories provided in the questions. Table 2 shows a summary of the results. 

 

Table 1: Student test scores. The control section employs only traditional source code, while the experimental section 
alternates between traditional and literate programming. Values are given as mean±standard deviation. Horizontal 
differences are reported between the control and experimental section means. 

 Control 
section 

Experimental section Difference 

 Traditional Traditional LP  
Test 1, #12-20 91%±8% 94%±12%  3% 
Test 2, #17-28 69%±13%  78%±17% 8% 
Test 3, #1-11, 16-29 70%±15% 84%±14%  14% 
Final, #24-29 58%±19%  72%±22% 13% 

5%

−1% 



Analyzing the comments provided in answer to questions 3, 6, and 8 produced the following com-
mon themes: 

1. Students would like the code organized by topic, rather than class date. This suggestion has 
been implemented for the Spring 2016 semester. 

2. Several students stated that they weren’t aware that the literate programming pages were 
available on the web, thinking they were only provided for in-class exercises. Students 
were sent several e-mails giving the address of the LP pages; for the Spring 2016 semester, 
students must access the LP website for every in-class assignment. 

3. Students would like live updates available via the web, as the instructors add examples and 
notes to the LP document in class. Previously, the LP document wasn’t posted to the web 
until after each class period. This suggestion has been implemented in the Spring 2016 
semester. 

4. Students requested more explanation and more videos. The class is “flipped,” which causes 
some students to feel cheated that lectures focus on in-class exercises, rather than deliver-
ing facts. In addition, some of the older videos need to be updated. 

Based on these survey results, students refer to both traditional source code and its literate pro-
gramming form with essentially equal frequency. The higher response of 61% for traditional versus 
42% for LP in the category of “a few times” represents a difference for student who made little use 
of either system; the usage frequencies for “frequently” and “several times” are almost identical. 
Likewise, noting the wide standard deviation, students considered both traditional and LP forms 
equally helpful. Students reported preferring the LP format over the traditional format; however, 
given a large group (27%) of “don’t care” responses, this is a mild preference. Given that this is 
the first exposure students have to the literate programming format, and noting that all their previ-
ous instruction and programming assignments employ the traditional form, students seem willing 
to embrace the literate programming approach. This preference is also notable in that several stu-
dents reported they were unaware of the existence of the literate programming webpages. 

 

Table 2. Survey results. Numbers, such as “1. Traditional”, refer to the numbered questions given in §4.2. 

How often did 
you refer to: 

1. Traditional 4. LP  7. Which format? 
 

Frequently 3% 4%  Traditional 27% 
Several times 16% 17%  LP 41% 
A few times 61% 42%  Neither 5% 
Once 11% 13%  Don't care 27% 
Never 11% 25%    
      
# responses 38 24  # responses 22 

 

How helpful? 2. Traditional 5. LP 
Mean 7.576923 7 
Std. Dev. 1.498026 2.075498
# responses 26 26 



In Table 1, the differences reported between the control and experimental section attempts to re-
duce the effects of confounding variables between the sections such as instructor style, student 
background, and student ability. These differences show a negligible delta of 3% between the two 
sections for test 1, during which both sections employed traditional source code, suggesting that 
effects of confounding variables are small, particularly given the wide standard deviations. Test 2, 
which compares traditional to literate programming instruction, shows a slightly larger difference 
of 8%. Treating test 1 as a baseline difference and test 2 as the expected effect shows a vertical 
difference of 5%, suggesting a small, statistically insignificant improvement using literate pro-
gramming. The test 3/final set suggests confounding variables have a greater impact, with a 14% 
difference for traditional source code. However, in this set the effect of literate programming is 
small, with a small (but again statistically insignificant) decrease of 1%. Overall, these results (a 
delta of 5%, then –1%) suggest a small, though statistically insignificant improvement when em-
ploying literate programming. 

6. Conclusions and future work 
In conclusion, these results indicate that literate programing may provide some benefit to students 
in the context of a microprocessors course. In particular, a student survey shows a mild preference 
for the literate programming form when compared to the traditional form. In addition, an analysis 
of student performance on examinations shows a small, statistically insignificant improvement in 
student performance when employing literate programming. Larger datasets are needed to verify 
that this effect holds more generally. 

The efforts reported herein represent only the beginning of the pedagogical possibility for literate 
programming. One promising avenue for exploration involves engaging students in the creation of 
a literate program, using writing-to-learn strategies in this context of programming12. From a tool 
perspective, extending CodeChat from its current state, in which edits can only be made to the 
source code, to enable direct modification of the literate programming document, would signifi-
cantly improve the usability of the system. Further research into the effectiveness of instructor use 
of literate programming to confirm its benefits, as well as experiments on the usefulness of literate 
programming techniques for experienced programmers, is also warranted. 

 

 

References 

1 Bilton, Nick, “‘Smart’ Home Suffers a Brain Freeze”, The New York Times, Jan. 14, 2016, pg. D2. Also available as 
http://www.nytimes.com/2016/01/14/fashion/nest-thermostat-glitch-battery-dies-software-freeze.html. 
2 Warrick, Joby, “EPA: Volkswagen used ‘defeat device’ to illegally skirt air-pollution controls,” The Washington Post, 
Sep. 18, 2015, available from https://www.washingtonpost.com/news/energy-environment/wp/2015/09/18/epa-
volkswagen-used-defeat-device-to-circumvent-air-pollution-controls/. 
3 McKracken, M. et al. (December 2001) A Multi-national, multi-institutional study of assessment of programming 
skills of first-year CS Students, SIGCSE Bulletin, vol. 33, no. 4, pp. 125-180. 
4 Knuth, D. (1992). Literate Programming (1984). Literate Programming. CSLI. p. 99. 
5 Skaller, M. J., in a Charming Python interview. Retrieved from http://gnosis.cx/publish/programming/charming_py-
thon_8.html. 
6 Lennox, John, “God’s Undertaker: Has Science Buried God,” Lion Hudson Plc, 2007, p. 40. 
 

 



 

7 Pieterse, V., Derrick G. K., & Boake, A. (2004). A case for contemporary literate programming, in SAICSIT, 75, 2-
9, Stellenbosch, Western Cape, South Africa. 
8 Hurst, A. J. (1996). Literate programming as an aid to marking student assignments. Proceedings of the 1st Austral-
asian conference on Computer Science education, 280-286. 
9 Childs, B., Dunn, D., & Lively, W. (1995). Teaching CS/1 Courses in a Literate Manner. Proceedings of the TeX 
Users Group Conference, St. Petersburg, Florida, July 24-28, Volume 16, No. 3, p. 300-309. 
10 Shum, S. & Cook, C. (1994). Using Literate Programming to Teach Good Programming Practices. Proceedings of 
the twenty-fifth SIGCSE symposium on Computer Science education, p. 66-70. 
11 See http://rant.gulbrandsen.priv.no/udoc/history. 
12 B. A. Jones, M. Jean Mohammadi-Aragh, A. K. Barton, D. Reese, and H. Pan, “Writing-to-Learn-to-Program: Ex-
amining the Need for a New Genre in Programming Pedagogy,” Proceedings of the 122nd ASEE Annual Conference 
and Exposition, June 14-17, 2015, Seattle, WA, USA. 
13 Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285. 
14 Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and instruction, 12(3), 185-
233. 
15 Sweller, J., Van Merriënboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational 
psychology review, 10(3), 251-296. 


